Antibodies are essential biochemical reagents for detecting protein post-translational modifications (PTMs) in complex samples. However, recent efforts in developing PTM-targeting antibodies have reported frequent non-specific binding and limited affinity of such antibodies. To address these challenges, we investigated whether directed evolution could be applied to improve the affinity of a high-specificity antibody targeting phospho-threonine 231 (pT231) of the human microtubule-associated protein tau. On the basis of existing structural information, we hypothesized that improving antibody affinity may come at the cost of loss in specificity. To test this hypothesis, we developed a novel approach using yeast surface display to quantify the specificity of PTM-targeting antibodies. When we affinity-matured the single-chain variable antibody fragment through directed evolution, we found that its affinity can be improved > 20-fold over that of the wild-type antibody, reaching a picomolar range. We also discovered that most of the high-affinity variants exhibit cross-reactivity towards the non-phosphorylated target site, but not to the phosphorylation site with a scrambled sequence. However, systematic quantification of the specificity revealed that such a tradeoff between the affinity and specificity did not apply to all variants and led to the identification of a picomolar-affinity variant that has a matching high specificity of the original phospho-tau antibody. In cell- and tissue-imaging experiments, the high-affinity variant gave significantly improved signal intensity while having no detectable nonspecific binding. These results demonstrate that directed evolution is a viable approach for obtaining high-affinity PTM-specific antibodies, and highlight the importance of assessing the specificity in the antibody engineering process.
more »
« less
Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space
Abstract Therapeutic antibody development requires selection and engineering of molecules with high affinity and other drug-like biophysical properties. Co-optimization of multiple antibody properties remains a difficult and time-consuming process that impedes drug development. Here we evaluate the use of machine learning to simplify antibody co-optimization for a clinical-stage antibody (emibetuzumab) that displays high levels of both on-target (antigen) and off-target (non-specific) binding. We mutate sites in the antibody complementarity-determining regions, sort the antibody libraries for high and low levels of affinity and non-specific binding, and deep sequence the enriched libraries. Interestingly, machine learning models trained on datasets with binary labels enable predictions of continuous metrics that are strongly correlated with antibody affinity and non-specific binding. These models illustrate strong tradeoffs between these two properties, as increases in affinity along the co-optimal (Pareto) frontier require progressive reductions in specificity. Notably, models trained with deep learning features enable prediction of novel antibody mutations that co-optimize affinity and specificity beyond what is possible for the original antibody library. These findings demonstrate the power of machine learning models to greatly expand the exploration of novel antibody sequence space and accelerate the development of highly potent, drug-like antibodies.
more »
« less
- Award ID(s):
- 1804313
- PAR ID:
- 10368235
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Transcription factors (TF) are proteins that bind DNA in a sequence-specific manner to regulate gene transcription. Despite their unique intrinsic sequence preferences,in vivogenomic occupancy profiles of TFs differ across cellular contexts. Hence, deciphering the sequence determinants of TF binding, both intrinsic and context-specific, is essential to understand gene regulation and the impact of regulatory, non-coding genetic variation. Biophysical models trained onin vitroTF binding assays can estimate intrinsic affinity landscapes and predict occupancy based on TF concentration and affinity. However, these models cannot adequately explain context-specific,in vivobinding profiles. Conversely, deep learning models, trained onin vivoTF binding assays, effectively predict and explain genomic occupancy profiles as a function of complex regulatory sequence syntax, albeit without a clear biophysical interpretation. To reconcile these complementary models ofin vitroandin vivoTF binding, we developed Affinity Distillation (AD), a method that extracts thermodynamic affinitiesde-novofrom deep learning models of TF chromatin immunoprecipitation (ChIP) experiments by marginalizing away the influence of genomic sequence context. Applied to neural networks modeling diverse classes of yeast and mammalian TFs, AD predicts energetic impacts of sequence variation within and surrounding motifs on TF binding as measured by diversein vitroassays with superior dynamic range and accuracy compared to motif-based methods. Furthermore, AD can accurately discern affinities of TF paralogs. Our results highlight thermodynamic affinity as a key determinant ofin vivobinding, suggest that deep learning models ofin vivobinding implicitly learn high-resolution affinity landscapes, and show that these affinities can be successfully distilled using AD. This new biophysical interpretation of deep learning models enables high-throughputin silicoexperiments to explore the influence of sequence context and variation on both intrinsic affinity andin vivooccupancy.more » « less
-
Abstract A machine learning-based drug screening technique has been developed and optimized using convolutional neural network-derived fingerprints. The optimization of weights in the neural network-based fingerprinting technique was compared with fixed Morgan fingerprints in regard to binary classification on drug-target binding affinity. The assessment was carried out using six different target proteins using randomly chosen small molecules from the ZINC15 database for training. This new architecture proved to be more efficient in screening molecules that less favorably bind to specific targets and retaining molecules that favorably bind to it. Scientific contribution We have developed a new neural fingerprint-based screening model that has a significant ability to capture hits. Despite using a smaller dataset, this model is capable of mapping chemical space similar to other contemporary algorithms designed for molecular screening. The novelty of the present algorithm lies in the speed with which the models are trained and tuned before testing its predictive capabilities and hence is a significant step forward in the field of machine learning-embedded computational drug discovery.more » « less
-
Drug targets are the main focus of drug discovery due to their key role in disease pathogenesis. Computational approaches are widely applied to drug development because of the increasing availability of biological molecular datasets. Popular generative approaches can create new drug molecules by learning the given molecule distributions. However, these approaches are mostly not for target-specific drug discovery. We developed an energy-based probabilistic model for computational target-specific drug discovery. Results show that our proposed TagMol can generate molecules with similar binding affinity scores asrealmolecules. GAT-based models showed faster and better learning relative to Graph Convolutional Network baseline models.more » « less
-
Li, Jinyan (Ed.)SARS-CoV-2 variants with enhanced transmissibility represent a serious threat to global health. Here we report machine learning models that can predict the impact of receptor-binding domain (RBD) mutations on receptor (ACE2) affinity, which is linked to infectivity, and escape from human serum antibodies, which is linked to viral neutralization. Importantly, the models predict many of the known impacts of RBD mutations in current and former Variants of Concern on receptor affinity and antibody escape as well as novel sets of mutations that strongly modulate both properties. Moreover, these models reveal key opposing impacts of RBD mutations on transmissibility, as many sets of RBD mutations predicted to increase antibody escape are also predicted to reduce receptor affinity and vice versa. These models, when used in concert, capture the complex impacts of SARS-CoV-2 mutations on properties linked to transmissibility and are expected to improve the development of next-generation vaccines and biotherapeutics.more » « less
An official website of the United States government
