Abstract Antibodies raised against defined phosphorylation sites of the microtubule‐associated protein tau are widely used in scientific research and being applied in clinical assays. However, recent studies have revealed an alarming degree of non‐specific binding found in these antibodies. In order to quantify and compare the specificity phospho‐tau antibodies and other post‐translational modification site‐specific antibodies in general, a measure of specificity is urgently needed. Here, we report a robust flow cytometry assay using human embryonic kidney cells that enables the determination of a specificity parameter termed Φ, which measures the fraction of non‐specific signal in antibody binding. We validate our assay using anti‐tau antibodies with known specificity profiles, and apply it to measure the specificity of seven widely used phospho‐tau antibodies (AT270, AT8, AT100, AT180, PHF‐6, TG‐3, and PHF‐1) among others. We successfully determined the Φ values for all antibodies except AT100, which did not show detectable binding in our assay. Our results show that antibodies AT8, AT180, PHF‐6, TG‐3, and PHF‐1 have Φ values near 1, which indicates no detectable non‐specific binding. AT270 showed Φ value around 0.8, meaning that approximately 20% of the binding signal originates from non‐specific binding. Further analyses using immunocytochemistry and western blotting confirmed the presence of non‐specific binding of AT270 to non‐tau proteins found in human embryonic kidney cells and the mouse hippocampus. We anticipate that the quantitative approach and parameter introduced here will be widely adopted as a standard for reporting the specificity for phospho‐tau antibodies, and potentially for post‐translational modification targeting antibodies in general. imageCover Image for this issue: doi:10.1111/jnc.14727.
more »
« less
Directed Evolution of a Picomolar Affinity High Specificity Antibody Targeting Phosphorylated Tau
Antibodies are essential biochemical reagents for detecting protein post-translational modifications (PTMs) in complex samples. However, recent efforts in developing PTM-targeting antibodies have reported frequent non-specific binding and limited affinity of such antibodies. To address these challenges, we investigated whether directed evolution could be applied to improve the affinity of a high-specificity antibody targeting phospho-threonine 231 (pT231) of the human microtubule-associated protein tau. On the basis of existing structural information, we hypothesized that improving antibody affinity may come at the cost of loss in specificity. To test this hypothesis, we developed a novel approach using yeast surface display to quantify the specificity of PTM-targeting antibodies. When we affinity-matured the single-chain variable antibody fragment through directed evolution, we found that its affinity can be improved > 20-fold over that of the wild-type antibody, reaching a picomolar range. We also discovered that most of the high-affinity variants exhibit cross-reactivity towards the non-phosphorylated target site, but not to the phosphorylation site with a scrambled sequence. However, systematic quantification of the specificity revealed that such a tradeoff between the affinity and specificity did not apply to all variants and led to the identification of a picomolar-affinity variant that has a matching high specificity of the original phospho-tau antibody. In cell- and tissue-imaging experiments, the high-affinity variant gave significantly improved signal intensity while having no detectable nonspecific binding. These results demonstrate that directed evolution is a viable approach for obtaining high-affinity PTM-specific antibodies, and highlight the importance of assessing the specificity in the antibody engineering process.
more »
« less
- Award ID(s):
- 1706743
- PAR ID:
- 10062189
- Date Published:
- Journal Name:
- Journal of Biological Chemistry
- ISSN:
- 0021-9258
- Page Range / eLocation ID:
- jbc.RA118.003557
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Therapeutic antibody development requires selection and engineering of molecules with high affinity and other drug-like biophysical properties. Co-optimization of multiple antibody properties remains a difficult and time-consuming process that impedes drug development. Here we evaluate the use of machine learning to simplify antibody co-optimization for a clinical-stage antibody (emibetuzumab) that displays high levels of both on-target (antigen) and off-target (non-specific) binding. We mutate sites in the antibody complementarity-determining regions, sort the antibody libraries for high and low levels of affinity and non-specific binding, and deep sequence the enriched libraries. Interestingly, machine learning models trained on datasets with binary labels enable predictions of continuous metrics that are strongly correlated with antibody affinity and non-specific binding. These models illustrate strong tradeoffs between these two properties, as increases in affinity along the co-optimal (Pareto) frontier require progressive reductions in specificity. Notably, models trained with deep learning features enable prediction of novel antibody mutations that co-optimize affinity and specificity beyond what is possible for the original antibody library. These findings demonstrate the power of machine learning models to greatly expand the exploration of novel antibody sequence space and accelerate the development of highly potent, drug-like antibodies.more » « less
-
null (Ed.)Abstract The ability to measure total and phosphorylated tau levels in clinical samples is transforming the detection of Alzheimer’s disease (AD) and other neurodegenerative diseases. In particular, recent reports indicate that accurate detection of low levels of phosphorylated tau (p-tau) in plasma provides a reliable biomarker of AD long before sensing memory loss. Therefore, the diagnosis and monitoring of neurodegenerative diseases progression using blood samples is becoming a reality. These major advances were achieved by using antibodies specific to p-tau as well as sophisticated high-sensitivity immunoassay platforms. This review focuses on these enabling advances in high-specificity antibody development, engineering, and novel signal detection methods. We will draw insights from structural studies on p-tau antibodies, engineering efforts to improve their binding properties, and efforts to validate their specificity. A comprehensive survey of high-sensitivity p-tau immunoassay platforms along with sensitivity limits will be provided. We conclude that although robust approaches for detecting certain p-tau species have been established, systematic efforts to validate antibodies for assay development is still needed for the recognition of biomarkers for AD and other neurodegenerative diseases.more » « less
-
Broadly neutralizing antibodies (bnAbs) that neutralize diverse variants of a particular virus are of considerable therapeutic interest. Recent advances have enabled us to isolate and engineer these antibodies as therapeutics, but eliciting them through vaccination remains challenging, in part due to our limited understanding of how antibodies evolve breadth. Here, we analyze the landscape by which an anti-influenza receptor binding site (RBS) bnAb, CH65, evolved broad affinity to diverse H1 influenza strains. We do this by generating an antibody library of all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the affinity-matured CH65 antibody and measure the affinity of each intermediate to three distinct H1 antigens. We find that affinity to each antigen requires a specific set of mutations – distributed across the variable light and heavy chains – that interact non-additively (i.e., epistatically). These sets of mutations form a hierarchical pattern across the antigens, with increasingly divergent antigens requiring additional epistatic mutations beyond those required to bind less divergent antigens. We investigate the underlying biochemical and structural basis for these hierarchical sets of epistatic mutations and find that epistasis between heavy chain mutations and a mutation in the light chain at the V H -V L interface is essential for binding a divergent H1. Collectively, this is the first work to comprehensively characterize epistasis between heavy and light chain mutations and shows that such interactions are both strong and widespread. Together with our previous study analyzing a different class of anti-influenza antibodies, our results implicate epistasis as a general feature of antibody sequence-affinity landscapes that can potentiate and constrain the evolution of breadth.more » « less
-
Abstract Therapeutic antibodies, due to their high affinity and specificity toward their biological targets, may demonstrate reduced harmful side effects compared with traditional drug moieties. While most of the as‐yet clinically approved antibody therapeutics have targeted extracellular or membrane‐bound domains, the ability to target intracellular antigens with antibodies opens up tremendous opportunities for imaging, diagnosis, and therapeutic applications. Generally, delivery concerns have limited the ability to target intracellular antigens, as many antibodies cannot easily cross the cell membrane due to their size and surface chemistry. Delivery platforms have been explored to address this issue, including physical methods, fusion protein/peptide techniques, and synthetic carrier‐based systems. This review summarizes the progress of carrier‐based intracellular antibody delivery systems employing synthetic lipids, polymers, and inorganic nanomaterials. Antibodies targeting various epitopes have been loaded through adsorption, conjugation, or physical encapsulation strategies. Successful intracellular deliveries have been demonstrated largely through fluorescence imaging using dye‐labeled antibody cargos. Specific synthetic delivery platforms have great potential for ex vivo and in vivo therapeutic applications. Challenges and opportunities are further discussed for material scientists to explore in this research area.more » « less
An official website of the United States government

