skip to main content


Title: Llamaradas Estelares: Modeling the Morphology of White-light Flares
Abstract

Stellar variability is a limiting factor for planet detection and characterization, particularly around active M-type stars. Here we revisit one of the most active stars from the Kepler mission, the M4 star GJ 1243, and use a sample of 414 flare events from 11 months of 1-minute cadence light curves to study the empirical morphology of white-light stellar flares. We use a Gaussian process detrending technique to account for the underlying starspots. We present an improved analytic, continuous flare template that is generated by stacking the flares onto a scaled time and amplitude and uses a Markov Chain Monte Carlo analysis to fit the model. Our model is defined using classical flare events but can also be used to model complex, multipeaked flare events. We demonstrate the utility of our model using TESS data at the 10-minute, 2-minute, and 20 s cadence modes. Our new flare model code is made publicly available on GitHub.5

https://github.com/lupitatovar/Llamaradas-Estelares

 
more » « less
Award ID(s):
1907342
NSF-PAR ID:
10368333
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
1
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 17
Size(s):
["Article No. 17"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High-fidelity simulators that connect theoretical models with observations are indispensable tools in many sciences. If the likelihood is known, inference can proceed using standard techniques. However, when the likelihood is intractable or unknown, a simulator makes it possible to infer the parameters of a theoretical model directly from real and simulated observations when coupled with machine learning. We introduce an extension of the recently proposed likelihood-free frequentist inference (LF2I) approach that makes it possible to construct confidence sets with thep-value function and to use the same function to check the coverage explicitly at any given parameter point. LikeLF2I, this extension yields provably valid confidence sets in parameter inference problems for which a high-fidelity simulator is available. The utility of our algorithm is illustrated by applying it to three pedagogically interesting examples: the first is from cosmology, the second from high-energy physics and astronomy, both with tractable likelihoods, while the third, with an intractable likelihood, is from epidemiology3

    Code to reproduce all of our results is available onhttps://github.com/AliAlkadhim/ALFFI.

    .

     
    more » « less
  2. Abstract

    In this work, we present classification results on early supernova light curves from SCONE, a photometric classifier that uses convolutional neural networks to categorize supernovae (SNe) by type using light-curve data. SCONE is able to identify SN types from light curves at any stage, from the night of initial alert to the end of their lifetimes. Simulated LSST SNe light curves were truncated at 0, 5, 15, 25, and 50 days after the trigger date and used to train Gaussian processes in wavelength and time space to produce wavelength–time heatmaps. SCONE uses these heatmaps to perform six-way classification between SN types Ia, II, Ibc, Ia-91bg, Iax, and SLSN-I. SCONE is able to perform classification with or without redshift, but we show that incorporating redshift information improves performance at each epoch. SCONE achieved 75% overall accuracy at the date of trigger (60% without redshift), and 89% accuracy 50 days after trigger (82% without redshift). SCONE was also tested on bright subsets of SNe (r< 20 mag) and produced 91% accuracy at the date of trigger (83% without redshift) and 95% five days after trigger (94.7% without redshift). SCONE is the first application of convolutional neural networks to the early-time photometric transient classification problem. All of the data processing and model code developed for this paper can be found in the SCONE software package1

    github.com/helenqu/scone

    located at github.com/helenqu/scone (Qu 2021).

     
    more » « less
  3. Abstract

    Reliable studies of the long-term dynamics of planetary systems require numerical integrators that are accurate and fast. The challenge is often formidable because the chaotic nature of many systems requires relative numerical error bounds at or close to machine precision (∼10−16, double-precision arithmetic); otherwise, numerical chaos may dominate over physical chaos. Currently, the speed/accuracy demands are usually only met by symplectic integrators. For example, the most up-to-date long-term astronomical solutions for the solar system in the past (widely used in, e.g., astrochronology and high-precision geological dating) have been obtained using symplectic integrators. However, the source codes of these integrators are unavailable. Here I present the symplectic integratororbitN(lean version 1.0) with the primary goal of generating accurate and reproducible long-term orbital solutions for near-Keplerian planetary systems (here the solar system) with a dominant massM0. Among other features,orbitN-1.0includesM0’s quadrupole moment, a lunar contribution, and post-Newtonian corrections (1PN) due toM0(fast symplectic implementation). To reduce numerical round-off errors, Kahan compensated summation was implemented. I useorbitNto provide insight into the effect of various processes on the long-term chaos in the solar system. Notably, 1PN corrections have the opposite effect on chaoticity/stability on a 100 Myr versus Gyr timescale. For the current application,orbitNis about as fast as or faster (factor 1.15–2.6) than comparable integrators, depending on hardware.1

    The orbitN source code (C) is available athttp://github.com/rezeebe/orbitN.

     
    more » « less
  4. ABSTRACT

    Searches for optical transients are usually performed with a cadence of days to weeks, optimized for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour time-scales. Here, we present the results of deep searches for dim, minute-time-scale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20 s exposures to systematically probe time-scales down to 1.17 min at magnitude limits g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multiband imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multifacility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-time-scale fast optical transient rates for a range of depths and time-scales. Finally, we demonstrate that optical g-band light-curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.

     
    more » « less
  5. Abstract

    We present an expansion of FLEET, a machine-learning algorithm optimized to select transients that are most likely tidal disruption events (TDEs). FLEET is based on a random forest algorithm trained on both the light curves and host galaxy information of 4779 spectroscopically classified transients. We find that for transients with a probability of being a TDE,P(TDE) > 0.5, we can successfully recover TDEs with ≈40% completeness and ≈30% purity when using their first 20 days of photometry or a similar completeness and ≈50% purity when including 40 days of photometry, an improvement of almost 2 orders of magnitude compared to random selection. Alternatively, we can recover TDEs with a maximum purity of ≈80% and a completeness of ≈30% when considering only transients withP(TDE) > 0.8. We explore the use of FLEET for future time-domain surveys such as the Legacy Survey of Space and Time on the Vera C. Rubin Observatory (Rubin) and the Nancy Grace Roman Space Telescope (Roman). We estimate that ∼104well-observed TDEs could be discovered every year by Rubin and ∼200 TDEs by Roman. Finally, we run FLEET on the TDEs from our Rubin survey simulation and find that we can recover ∼30% of them at redshiftz< 0.5 withP(TDE) > 0.5, or ∼3000 TDEs yr–1that FLEET could uncover from the Rubin stream. We have demonstrated that we will be able to run FLEET on Rubin photometry as soon as this survey begins. FLEET is provided as an open source package on GitHub: https://github.com/gmzsebastian/FLEET.

     
    more » « less