Abstract Key science questions, such as galaxy distance estimation and weather forecasting, often require knowing the full predictive distribution of a target variableYgiven complex inputsX. Despite recent advances in machine learning and physics-based models, it remains challenging to assess whether an initial model is calibrated for allx, and when needed, to reshape the densities ofytoward ‘instance-wise’ calibration. This paper introduces the local amortized diagnostics and reshaping of conditional densities (LADaR) framework and proposes a new computationally efficient algorithm (Cal-PIT) that produces interpretable local diagnostics and provides a mechanism for adjusting conditional density estimates (CDEs).Cal-PITlearns a single interpretable local probability–probability map from calibration data that identifies where and how the initial model is miscalibrated across feature space, which can be used to morph CDEs such that they are well-calibrated. We illustrate the LADaR framework on synthetic examples, including probabilistic forecasting from image sequences, akin to predicting storm wind speed from satellite imagery. Our main science application involves estimating the probability density functions of galaxy distances given photometric data, whereCal-PITachieves better instance-wise calibration than all 11 other literature methods in a benchmark data challenge, demonstrating its utility for next-generation cosmological analyzes99Code available as a Python package here:https://github.com/lee-group-cmu/Cal-PIT..
more »
« less
This content will become publicly available on February 11, 2026
Peering into the Black Box: Forward Modeling of the Uncertainty Budget of High-resolution Spectroscopy of Exoplanet Atmospheres
Abstract Ground-based high-resolution cross-correlation spectroscopy (HRCCS;R ≳ 15,000) is a powerful complement to space-based studies of exoplanet atmospheres. By resolving individual spectral lines, HRCCS can precisely measure chemical abundance ratios, directly constrain atmospheric dynamics, and robustly probe multidimensional physics. But the subtleties of HRCCS data sets—e.g., the lack of exoplanetary spectra visible by eye and the statistically complex process of telluric removal—can make interpreting them difficult. In this work, we seek to clarify the uncertainty budget of HRCCS with a forward-modeling approach. We present an HRCCS observation simulator,scope,55https://github.com/arjunsavel/scopethat incorporates spectral contributions from the exoplanet, star, tellurics, and instrument. This tool allows us to control the underlying data set, enabling controlled experimentation with complex HRCCS methods. Simulating a fiducial hot Jupiter data set (WASP-77Ab emission with IGRINS), we first confirm via multiple tests that the commonly used principal component analysis does not bias the planetary signal when few components are used. Furthermore, we demonstrate that mildly varying tellurics and moderate wavelength solution errors induce only mild decreases in HRCCS detection significance. However, limiting-case, strongly varying tellurics can bias the retrieved velocities and gas abundances. Additionally, in the low signal-to-noise ratio limit, constraints on gas abundances become highly non-Gaussian. Our investigation of the uncertainties and potential biases inherent in HRCCS data analysis enables greater confidence in scientific results from this maturing method.
more »
« less
- Award ID(s):
- 2307177
- PAR ID:
- 10614281
- Publisher / Repository:
- AAS
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 169
- Issue:
- 3
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 135
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High-fidelity simulators that connect theoretical models with observations are indispensable tools in many sciences. If the likelihood is known, inference can proceed using standard techniques. However, when the likelihood is intractable or unknown, a simulator makes it possible to infer the parameters of a theoretical model directly from real and simulated observations when coupled with machine learning. We introduce an extension of the recently proposed likelihood-free frequentist inference (LF2I) approach that makes it possible to construct confidence sets with thep-value function and to use the same function to check the coverage explicitly at any given parameter point. LikeLF2I, this extension yields provably valid confidence sets in parameter inference problems for which a high-fidelity simulator is available. The utility of our algorithm is illustrated by applying it to three pedagogically interesting examples: the first is from cosmology, the second from high-energy physics and astronomy, both with tractable likelihoods, while the third, with an intractable likelihood, is from epidemiology33Code to reproduce all of our results is available onhttps://github.com/AliAlkadhim/ALFFI..more » « less
-
Abstract Stellar variability is a limiting factor for planet detection and characterization, particularly around active M-type stars. Here we revisit one of the most active stars from the Kepler mission, the M4 star GJ 1243, and use a sample of 414 flare events from 11 months of 1-minute cadence light curves to study the empirical morphology of white-light stellar flares. We use a Gaussian process detrending technique to account for the underlying starspots. We present an improved analytic, continuous flare template that is generated by stacking the flares onto a scaled time and amplitude and uses a Markov Chain Monte Carlo analysis to fit the model. Our model is defined using classical flare events but can also be used to model complex, multipeaked flare events. We demonstrate the utility of our model using TESS data at the 10-minute, 2-minute, and 20 s cadence modes. Our new flare model code is made publicly available on GitHub.55https://github.com/lupitatovar/Llamaradas-Estelaresmore » « less
-
Abstract Reliable studies of the long-term dynamics of planetary systems require numerical integrators that are accurate and fast. The challenge is often formidable because the chaotic nature of many systems requires relative numerical error bounds at or close to machine precision (∼10−16, double-precision arithmetic); otherwise, numerical chaos may dominate over physical chaos. Currently, the speed/accuracy demands are usually only met by symplectic integrators. For example, the most up-to-date long-term astronomical solutions for the solar system in the past (widely used in, e.g., astrochronology and high-precision geological dating) have been obtained using symplectic integrators. However, the source codes of these integrators are unavailable. Here I present the symplectic integratororbitN(lean version 1.0) with the primary goal of generating accurate and reproducible long-term orbital solutions for near-Keplerian planetary systems (here the solar system) with a dominant massM0. Among other features,orbitN-1.0includesM0’s quadrupole moment, a lunar contribution, and post-Newtonian corrections (1PN) due toM0(fast symplectic implementation). To reduce numerical round-off errors, Kahan compensated summation was implemented. I useorbitNto provide insight into the effect of various processes on the long-term chaos in the solar system. Notably, 1PN corrections have the opposite effect on chaoticity/stability on a 100 Myr versus Gyr timescale. For the current application,orbitNis about as fast as or faster (factor 1.15–2.6) than comparable integrators, depending on hardware.11The orbitN source code (C) is available athttp://github.com/rezeebe/orbitN.more » « less
-
Abstract While space-borne optical and near-infrared facilities have succeeded in delivering a precise and spatially resolved picture of our Universe, their small survey area is known to underrepresent the true diversity of galaxy populations. Ground-based surveys have reached comparable depths but at lower spatial resolution, resulting in source confusion that hampers accurate photometry extractions. What once was limited to the infrared regime has now begun to challenge ground-based ultradeep surveys, affecting detection and photometry alike. Failing to address these challenges will mean forfeiting a representative view into the distant Universe. We introduceThe Farmer: an automated, reproducible profile-fitting photometry package that pairs a library of smooth parametric models fromThe Tractorwith a decision tree that determines the best-fit model in concert with neighboring sources. Photometry is measured by fitting the models on other bands leaving brightness free to vary. The resulting photometric measurements are naturally total, and no aperture corrections are required. Supporting diagnostics (e.g.,χ2) enable measurement validation. As fitting models is relatively time intensive,The Farmeris built with high-performance computing routines. We benchmarkThe Farmeron a set of realistic COSMOS-like images and find accurate photometry, number counts, and galaxy shapes.The Farmeris already being utilized to produce catalogs for several large-area deep extragalactic surveys where it has been shown to tackle some of the most challenging optical and near-infrared data available, with the promise of extending to other ultradeep surveys expected in the near future.The Farmeris available to download from GitHub (https://github.com/astroweaver/the_farmer) and Zenodo (https://doi.org/10.5281/zenodo.8205817).more » « less
An official website of the United States government
