skip to main content

Title: Compositional dependence of the fragility in metallic glass forming liquids

The viscosity and its temperature dependence, the fragility, are key properties of a liquid. A low fragility is believed to promote the formation of metallic glasses. Yet, the fragility remains poorly understood, since experimental data of its compositional dependence are scarce. Here, we introduce the film inflation method (FIM), which measures the fragility of metallic glass forming liquids across wide ranges of composition and glass-forming ability. We determine the fragility for 170 alloys ranging over 25 at.% in Mg–Cu–Y. Within this alloy system, large fragility variations are observed. Contrary to the general understanding, a low fragility does not correlate with high glass-forming ability here. We introduce crystallization complexity as an additional contribution, which can potentially become significant when modeling glass forming ability over many orders of magnitude.

; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanoimprinting by thermoplastic forming has attracted significant attention due to its promise of low-cost fabrication of functionalized surfaces and nanostructured devices, and metallic glasses have been identified as a material class ideally suited for nanoimprinting. In particular, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material’s ability to replicate a mould. Here we demonstrate atomic-scale imprinting into a platinum-based metallic glass alloy under ambient conditions using atomic step edges of a strontium titanate single crystal as a mould. The moulded metallic glass replicates the ‘atomic smoothness’ of the strontium titanate, with identical roughness to the one measured on the mould even after multiple usages and with replicas exhibiting an exceptional long-term stability of years. By providing a practical, reusable, and potentially high-throughput approach for atomic imprinting, our findings may open novel applications in surface functionalization through topographical structuring.

  2. Abstract

    Despite decades of studies, the nature of the glass transition remains elusive. In particular, the sharpness of the dynamical arrest of a melt at the glass transition is captured by its fragility. Here, we reveal that fragility is governed by the medium-range order structure. Based on neutron-diffraction data for a series of aluminosilicate glasses, we propose a measurable structural parameter that features a strong inverse correlation with fragility, namely, the average medium-range distance (MRD). We use in-situ high-temperature neutron-scattering data to discuss the physical origin of this correlation. We argue that glasses exhibiting lowMRDvalues present an excess of small network rings. Such rings are unstable and deform more readily with changes in temperature, which tends to increase fragility. These results reveal that the sharpness of the dynamical arrest experienced by a silicate glass at the glass transition is surprisingly encoded into the stability of rings in its network.

  3. Abstract

    Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al–Ni–Ge system where we identified Al51Ge35Ni14as the best glass forming composition with a critical cooling rate of 104 K/s.

  4. An experimental study of the configurational thermodynamics for a series of near-eutectic Pt80-xCuxP20bulk metallic glass-forming alloys is reported where 14 <x< 27. The undercooled liquid alloys exhibit very high fragility that increases asxdecreases, resulting in an increasingly sharp glass transition. With decreasingx, the extrapolated Kauzmann temperature of the liquid,TK, becomes indistinguishable from the conventionally defined glass transition temperature,Tg. Forx< 17, the observed liquid configurational enthalpy vs.Tdisplays a marked discontinuous drop or latent heat at a well-defined freezing temperature,Tgm. The entropy drop for this first-order liquid/glass transition is approximately two-thirds of the entropy of fusion of the crystallized eutectic alloy. BelowTgm, the configurational entropy of the frozen glass continues to fall rapidly, approaching that of the crystallized eutectic solid in the low T limit. The so-called Kauzmann paradox, with negative liquid entropy (vs. the crystalline state), is averted and the liquid configurational entropy appears to comply with the third law of thermodynamics. Despite their ultrafragile character, the liquids atx= 14 and 16 are bulk glass formers, yielding fully glassy rods up to 2- and 3-mm diameter on water quenching in thin-wall silica tubes. The low Cu content alloys are definitive examples of glasses that exhibit first-order melting.

  5. Poisson’s ratio (ν) defines a material’s propensity to laterally expand upon compression, or laterally shrink upon tension for non-auxetic materials. This fundamental metric has traditionally, in some fields, been assumed to be a material-independent constant, but it is clear that it varies with composition across glasses, ceramics, metals, and polymers. The intrinsically elastic metric has also been suggested to control a range of properties, even beyond the linear-elastic regime. Notably, metallic glasses show a striking brittle-to-ductile (BTD) transition for ν-values above ~0.32. The BTD transition has also been suggested to be valid for oxide glasses, but, unfortunately, direct prediction of Poisson’s ratio from chemical composition remains challenging. With the long-term goal to discover such high-ν oxide glasses, we here revisit whether previously proposed relationships between Poisson’s ratio and liquid fragility (m) and atomic packing density (Cg) hold for oxide glasses, since this would enable m and Cg to be used as surrogates for ν. To do so, we have performed an extensive literature review and synthesized new oxide glasses within the zinc borate and aluminoborate families that are found to exhibit high Poisson’s ratio values up to ~0.34. We are not able to unequivocally confirm the universality of the Novikov-Sokolovmore »correlation between ν and m and that between ν and Cg for oxide glass-formers, nor for the organic, ionic, chalcogenide, halogenide, or metallic glasses. Despite significant scatter, we do, however, observe an overall increase in ν with increasing m and Cg, but it is clear that additional structural details besides m or Cg are needed to predict and understand the composition dependence of Poisson’s ratio. Finally, we also infer from literature data that, in addition to high ν, high Young’s modulus is also needed to obtain glasses with high fracture toughness.« less