Germanate glasses are of particular interest for their excellent optical properties as well as their abnormal structural changes that appear with the addition of modifiers, giving rise to the so‐called
Despite decades of studies, the nature of the glass transition remains elusive. In particular, the sharpness of the dynamical arrest of a melt at the glass transition is captured by its fragility. Here, we reveal that fragility is governed by the medium-range order structure. Based on neutron-diffraction data for a series of aluminosilicate glasses, we propose a measurable structural parameter that features a strong inverse correlation with fragility, namely, the average medium-range distance (
- Award ID(s):
- 1928538
- NSF-PAR ID:
- 10389288
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract germanate anomaly . This anomaly refers to the nonmonotonic compositional scaling of properties exhibited by alkali germanate glasses and has been studied with various spectroscopy techniques. However, it has been difficult to understand its atomic scale origin, especially since the germanium nucleus is not easily observed by nuclear magnetic resonance. To gain insights into the mechanisms of the germanate anomaly, we have constructed a structural model using statistical mechanics and topological constraint theory to provide an accurate prediction of alkali germanate glass properties. The temperature onsets for the rigid bond constraints are deduced from in situ Brillouin light scattering, and the number of constraints is shown to be accurately calculable using statistical methods. The alkali germanate model accurately captures the effect of the germanate anomaly on glass transition temperature, liquid fragility, and Young's modulus. We also reveal that compositional variations in the glass transition temperature and Young's modulus are governed by the O–Ge–O angular constraints, whereas the variations in fragility are governed by the Ge–O radial constraints. -
Glasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Here, we show that the atomic arrangement of strong network-forming GeO 2 glass is modified at medium range (<2 nm) through vapor deposition at elevated temperatures. Raman spectral signatures distinctively show that the population of six-membered GeO 4 rings increases at elevated substrate temperatures. Deposition near the glass transition temperature is more efficient than postgrowth annealing in modifying atomic structure at medium range. The enhanced medium-range organization correlates with reduction of the room temperature internal friction. Identifying the microscopic origin of room temperature internal friction in amorphous oxides is paramount to design the next-generation interference coatings for mirrors of the end test masses of gravitational wave interferometers, in which the room temperature internal friction is a main source of noise limiting their sensitivity.more » « less
-
Abstract Lithium aluminoborate glasses have recently been found to feature high resistance to crack initiation during indentation, but suffer from relatively low hardness and chemical durability. To further understand the mechanical properties of this glass family and their correlation with the network structure, we here study the effect of adding SiO2to a 25Li2O–20Al2O3–55B2O3glass on the structure and mechanical properties. Addition of silica increases the average network rigidity, but meanwhile its open tetrahedral structure decreases the atomic packing density. Consequently, we only observe a minor increase in hardness and glass transition temperature, and a decrease in Poisson's ratio. The addition of SiO2, and thus removal of Al2O3and/or B2O3, also makes the network less structurally adaptive to applied stress, since Al and B easily increase their coordination number under pressure, while this is not the case for Si under modest pressures. As such, although the silica‐containing networks have more free volume, they cannot densify more during indentation, which in turn leads to an overall decrease in crack resistance upon SiO2addition. Our work shows that, although pure silica glass has very high glass transition temperature and relatively high hardness, its addition in oxide glasses does not necessarily lead to significant increase in these properties due to the complex structural interactions in mixed network former glasses and the competitive effects of free volume and network rigidity.
-
Poisson’s ratio (ν) defines a material’s propensity to laterally expand upon compression, or laterally shrink upon tension for non-auxetic materials. This fundamental metric has traditionally, in some fields, been assumed to be a material-independent constant, but it is clear that it varies with composition across glasses, ceramics, metals, and polymers. The intrinsically elastic metric has also been suggested to control a range of properties, even beyond the linear-elastic regime. Notably, metallic glasses show a striking brittle-to-ductile (BTD) transition for ν-values above ~0.32. The BTD transition has also been suggested to be valid for oxide glasses, but, unfortunately, direct prediction of Poisson’s ratio from chemical composition remains challenging. With the long-term goal to discover such high-ν oxide glasses, we here revisit whether previously proposed relationships between Poisson’s ratio and liquid fragility (m) and atomic packing density (Cg) hold for oxide glasses, since this would enable m and Cg to be used as surrogates for ν. To do so, we have performed an extensive literature review and synthesized new oxide glasses within the zinc borate and aluminoborate families that are found to exhibit high Poisson’s ratio values up to ~0.34. We are not able to unequivocally confirm the universality of the Novikov-Sokolov correlation between ν and m and that between ν and Cg for oxide glass-formers, nor for the organic, ionic, chalcogenide, halogenide, or metallic glasses. Despite significant scatter, we do, however, observe an overall increase in ν with increasing m and Cg, but it is clear that additional structural details besides m or Cg are needed to predict and understand the composition dependence of Poisson’s ratio. Finally, we also infer from literature data that, in addition to high ν, high Young’s modulus is also needed to obtain glasses with high fracture toughness.more » « less
-
Abstract The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3and BiBO3are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5
x )Li2O–x Bi2O3–(25+0.5x )B2O3glasses in increments ofx = 5, with11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass ofx = 40.