skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Improving White Dwarfs as Chronometers with Gaia Parallaxes and Spectroscopic Metallicities
Abstract

White dwarfs (WDs) offer unrealized potential in solving two problems in astrophysics: stellar age accuracy and precision. WD cooling ages can be inferred from surface temperatures and radii, which can be constrained with precision by high-quality photometry and parallaxes. Accurate and precise Gaia parallaxes along with photometric surveys provide information to derive cooling and total ages for vast numbers of WDs. Here we analyze 1372 WDs found in wide binaries with main-sequence (MS) companions and report on the cooling and total age precision attainable in these WD+MS systems. The total age of a WD can be further constrained if its original metallicity is known because the MS lifetime depends on metallicity at fixed mass, yet metallicity is unavailable via spectroscopy of the WD. We show that incorporating spectroscopic metallicity constraints from 38 wide binary MS companions substantially decreases internal uncertainties in WD total ages compared to a uniform constraint. Averaged over the 38 stars in our sample, the total (internal) age uncertainty improves from 21.04% to 16.77% when incorporating the spectroscopic constraint. Higher mass WDs yield better total age precision; for eight WDs with zero-age MS masses ≥2.0M, the mean uncertainty in total ages improves from 8.61% to 4.54% when incorporating spectroscopic metallicities. We find that it is often possible to achieve 5% total age precision for WDs with progenitor masses above 2.0Mif parallaxes with ≤1% precision and Pan-STARRSg,r, andiphotometry with ≤0.01 mag precision are available.

 
more » « less
Award ID(s):
1715718
PAR ID:
10368383
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 26
Size(s):
Article No. 26
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    White dwarf (WD) stars evolve simply and predictably, making them reliable age indicators. However, self-consistent validation of the methods for determining WD total ages has yet to be widely performed. This work uses 1565 wide (>100 au) WD+WD binaries and 24 new triples containing at least two WDs to test the accuracy and validity of WD total age determinations. For these 1589 wide double WD binaries and triples, we derive the total age of each WD using photometric data from all-sky surveys, in conjunction with Gaia parallaxes and current hydrogen atmosphere WD models. Ignoring the initial-to-final mass relation and considering only WD cooling ages, we find that roughly 21%–36% of the more massive WDs in a system have a shorter cooling age. Since more massive WDs should be born as more massive main-sequence stars, we interpret this unphysical disagreement as evidence of prior mergers or the presence of an unresolved companion, suggesting that roughly 21%–36% of wide WD+WD binaries were once triples. Among the 423 wide WD+WD pairs that pass high-fidelity cuts, we find that 25% total age uncertainties are generally appropriate for WDs with masses >0.63Mand temperatures <12,000 K and provide suggested inflation factors for age uncertainties for higher-mass WDs. Overall, WDs return reliable stellar ages, but we detail cases where the total ages are least reliable, especially for WDs <0.63M.

     
    more » « less
  2. Abstract

    Gyrochronology, a valuable tool for determining ages of low-mass stars where other techniques fail, relies on accurate calibration. We present a sample of 185 wide (>100 au) white dwarf + main sequence (WD + MS) binaries. Total ages of WDs are computed using all-sky survey photometry, Gaia parallaxes, and WD atmosphere models. Using a magnetic braking law calibrated against open clusters, along with assumptions about initial conditions and angular momentum transport, we construct gyrochrones to predict the rotation periods of MS stars. Both data and models show that, at the fully convective boundary (FCB), MS stars with WD ages of up to 7.5 Gyr and within a <50 K effective temperature range experience up to a threefold increase in rotation period relative to stars slightly cooler than the FCB. We suggest that rapid braking at this boundary is driven by a sharp rise in the convective overturn timescale (τcz) caused by structural changes between partially and fully convective stars and the3He instability occurring at this boundary. While the specific location in mass (or temperature) of this feature varies with model physics, we argue that its existence remains consistent. Stars along this feature exhibit rotation periods that can be mapped, within 1σ, to a range of gyrochrones spanning ≈6 Gyr. Due to current temperature errors (≃50 K), this implies that a measured rotation period cannot be uniquely associated to a single gyrochrone, implying that gyrochronology may not be feasible for M dwarfs very close to the FCB.

     
    more » « less
  3. ABSTRACT

    Common envelope (CE) evolution, which is crucial in creating short-period binaries and associated astrophysical events, can be constrained by reverse modelling of such binaries’ formation histories. Through analysis of a sample of well-constrained white dwarf (WD) binaries with low-mass primaries (seven eclipsing double WDs, two non-eclipsing double WDs, one WD-brown dwarf), we estimate the CE energy efficiency αCE needed to unbind the hydrogen envelope. We use grids of He- and CO-core WD models to determine the masses and cooling ages that match each primary WD’s radius and temperature. Assuming gravitational wave-driven orbital decay, we then calculate the associated ranges in post-CE orbital period. By mapping WD models to a grid of red giant progenitor stars, we determine the total envelope binding energies and possible orbital periods at the point CE evolution is initiated, thereby constraining αCE. Assuming He-core WDs with progenitors of 0.9–2.0 M⊙, we find αCE ∼ 0.2–0.4 is consistent with each system we model. Significantly higher values of αCE are required for higher mass progenitors and for CO-core WDs, so these scenarios are deemed unlikely. Our values are mostly consistent with previous studies of post-CE WD binaries, and they suggest a nearly constant and low envelope ejection efficiency for CE events that produce He-core WDs.

     
    more » « less
  4. Abstract

    We measure the mass distribution of main-sequence (MS) companions to hot subdwarf B stars (sdBs) in post-common envelope binaries (PCEBs). We carried out a spectroscopic survey of 14 eclipsing systems (“HW Vir binaries”) with orbital periods of 3.8 < Porb < 12 hr, resulting in a well-understood selection function and a near-complete sample of HW Vir binaries withG < 16. We constrain companion masses from the radial velocity curves of the sdB stars. The companion mass distribution peaks atMMS ≈ 0.15Mand drops off atMMS > 0.2M, with only two systems hosting companions above the fully convective limit. There is no correlation betweenPorbandMMSwithin the sample. A similar drop-off in the companion mass distribution of white dwarf (WD) + MS PCEBs has been attributed to disrupted magnetic braking (MB) below the fully convective limit. We compare the sdB companion mass distribution to predictions of binary evolution simulations with a range of MB laws. Because sdBs have short lifetimes compared to WDs, explaining the lack of higher-mass MS companions to sdBs with disrupted MB requires MB to be boosted by a factor of 20–100 relative to MB laws inferred from the rotation evolution of single stars. We speculate that such boosting may be a result of irradiation-driven enhancement of the MS stars’ winds. An alternative possibility is that common envelope evolution favors low-mass companions in short-period orbits, but the existence of massive WD companions to sdBs with similar periods disfavors this scenario.

     
    more » « less
  5. Abstract Cooling white dwarfs (WDs) can yield accurate ages when theoretical cooling models fully account for the physics of the dense plasma of WD interiors. We use MESA to investigate cooling models for a set of massive and ultramassive WDs (0.9–1.3 ) for which previous models have failed to match kinematic age indicators based on Gaia DR2. We find that the WDs in this population can be explained as C/O cores experiencing unexpectedly rapid 22 Ne sedimentation in the strongly liquid interior just prior to crystallization. We propose that this rapid sedimentation is due to the formation of solid clusters of 22 Ne in the liquid C/O background plasma. We show that these heavier solid clusters sink faster than individual 22 Ne ions and enhance the sedimentation heating rate enough to dramatically slow WD cooling. MESA models including our prescription for cluster formation and sedimentation experience cooling delays of ≈4 Gyr on the WD Q branch, alleviating tension between cooling ages and kinematic ages. This same model then predicts cooling delays coinciding with crystallization of 6 Gyr or more in lower-mass WDs (0.6–0.8 ). Such delays are compatible with, and perhaps required by, observations of WD populations in the local 100 pc WD sample and the open cluster NGC 6791. These results motivate new investigations of the physics of strongly coupled C/O/Ne plasma mixtures in the strongly liquid state near crystallization and tests through comparisons with observed WD cooling. 
    more » « less