Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.
more »
« less
The Companion Mass Distribution of Post Common Envelope Hot Subdwarf Binaries: Evidence for Boosted and Disrupted Magnetic Braking?
Abstract We measure the mass distribution of main-sequence (MS) companions to hot subdwarf B stars (sdBs) in post-common envelope binaries (PCEBs). We carried out a spectroscopic survey of 14 eclipsing systems (“HW Vir binaries”) with orbital periods of 3.8 < Porb < 12 hr, resulting in a well-understood selection function and a near-complete sample of HW Vir binaries withG < 16. We constrain companion masses from the radial velocity curves of the sdB stars. The companion mass distribution peaks atMMS ≈ 0.15M⊙and drops off atMMS > 0.2M⊙, with only two systems hosting companions above the fully convective limit. There is no correlation betweenPorbandMMSwithin the sample. A similar drop-off in the companion mass distribution of white dwarf (WD) + MS PCEBs has been attributed to disrupted magnetic braking (MB) below the fully convective limit. We compare the sdB companion mass distribution to predictions of binary evolution simulations with a range of MB laws. Because sdBs have short lifetimes compared to WDs, explaining the lack of higher-mass MS companions to sdBs with disrupted MB requires MB to be boosted by a factor of 20–100 relative to MB laws inferred from the rotation evolution of single stars. We speculate that such boosting may be a result of irradiation-driven enhancement of the MS stars’ winds. An alternative possibility is that common envelope evolution favors low-mass companions in short-period orbits, but the existence of massive WD companions to sdBs with similar periods disfavors this scenario.
more »
« less
- Award ID(s):
- 2307232
- PAR ID:
- 10560224
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 136
- Issue:
- 12
- ISSN:
- 0004-6280
- Format(s):
- Medium: X Size: Article No. 124201
- Size(s):
- Article No. 124201
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with aPorb= 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star,MsdB= 0.383 ± 0.028M⊙with a massive white dwarf companion,MWD= 0.725 ± 0.026M⊙. From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas ourMESAmodel predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using theMESAstellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92M⊙with a thick helium layer of 0.17M⊙. This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.more » « less
-
Abstract Astrometry from Gaia DR3 has enabled the discovery of a sample of 3000+ binaries containing white dwarfs (WD) and main-sequence (MS) stars in relatively wide orbits, with orbital periodsPorb= (100–1000) days. This population was not predicted by binary population synthesis models before Gaia and—if the Gaia orbits are robust—likely requires very efficient envelope ejection during common envelope evolution (CEE). To assess the reliability of the Gaia solutions, we measured multi-epoch radial velocities (RVs) of 31 WD+MS binary candidates withPorb= (40–300) days andAstroSpectroSB1orbital solutions. We jointly fit the RVs and astrometry, allowing us to validate the Gaia solutions and tighten constraints on component masses. We find a high success rate for the Gaia solutions, with only 2 out of the 31 systems showing significant discrepancies between their Gaia orbital solutions and our RVs. Joint fitting of RVs and astrometry allows us to directly constrain the secondary-to-primary flux ratio , and we find for most objects, confirming the companions are indeed WDs. We tighten constraints on the binaries’ eccentricities, finding a mediane≈ 0.1. These eccentricities are much lower than those of normal MS+MS binaries at similar periods, but much higher than predicted for binaries formed via stable mass transfer. We present MESA single and binary evolution models to explore how the binaries may have formed. The orbits of most binaries in the sample can be produced through CEE that begins when the WD progenitor is an AGB star, corresponding to initial separations of 2–5 au. Roughly 50% of all post-common envelope binaries are predicted to have first interacted on the AGB, ending up in wide orbits like these systems.more » « less
-
Context. About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to different phenomena. Aims. Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods. By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia , and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75%) of the known sdB binaries and 82 newly found reflection effect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results. The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, differs from those with white dwarf companions, implying they come from different populations. By comparing the period and minimum companion mass distributions, we find that the reflection effect systems all have M dwarf or brown dwarf companions, and that there seem to be several different populations of hot subdwarfs with white dwarf binaries – one with white dwarf minimum masses around 0.4 M ⊙ , one with longer periods and minimum companion masses up to 0.6 M ⊙ , and at the shortest period, another with white dwarf minimum masses around 0.8 M ⊙ . We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase.more » « less
-
Context. Hot subdwarfs in close binaries with either M dwarf, brown dwarf, or white dwarf companions show unique light variations. In hot subdwarf binaries with M dwarf or brown dwarf companions, we can observe the so-called reflection effect, while in hot subdwarfs with close white dwarf companions, we find ellipsoidal modulation and/or Doppler beaming. Aims. Analyses of these light variations can be used to derive the mass and radius of the companion and determine its nature. Thereby, we can assume the most probable sdB mass and the radius of the sdB derived by the fit of the spectral energy distribution and the Gaia parallax. Methods. In the high signal-to-noise space-based light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission, several reflection effect binaries and ellipsoidal modulation binaries have been observed with much better quality than with ground-based observations. The high quality of the light curves allowed us to analyze a large sample of sdB binaries with M dwarf or white dwarf companions using LCURVE . Results. For the first time, we can constrain the absolute parameters of 19 companions of reflection effect systems, covering periods from 2.5 to 19 h and with companion masses from the hydrogen-burning limit to early M dwarfs. Moreover, we were able to determine the mass of eight white dwarf companion to hot subdwarf binaries showing ellipsoidal modulations, covering the as-yet unexplored period range of 7 to 19 h. The derived masses of the white dwarf companions show that all but two of the white dwarf companions are most likely helium-core white dwarfs. Combining our results with previously measured rotation velocities allowed us to derive the rotation period of seven sdBs in short-period binaries. In four of those systems, the rotation period of the sdB agrees with a tidally locked orbit, whereas in the other three systems, the sdB rotates significantly more slowly.more » « less