skip to main content


Title: A Spectrum of Convective Self‐Aggregation Based on Background Rotation
Abstract

High‐resolution modeling reveals a tendency for deep convection to spontaneously self‐aggregate from radiative‐convective equilibrium. Self‐aggregated convection takes different forms in nonrotating versus rotating environments, including tropical cyclones (TCs) in the latter. This suggests that self‐aggregation (SA), and the relative roles of the mechanisms that cause it, may undergo a gradual regime shift as the ambient rotation changes. We address this hypothesis using 31 cloud‐resolving model simulations onf‐planes corresponding to latitudes between 0.1° and 20°, spanning a range of weakly rotating environments largely unexplored in prior literature. Simulations are classified into three groups. The first (low‐f, 0.1°–5°) is characterized by the growth of several dry patches. Surface enthalpy flux feedbacks dominate in this initial growth phase, followed by radiative (primarily cloud longwave) effects. Eventually, convection takes the form of either a nonrotating band or a quasi‐circular cluster. In contrast, the 9°–20° (high‐f) group dries less rapidly in early stages, though enhanced surface flux effects form a moist anomaly that undergoes TC genesis. The TC then acts to dry the remainder of the domain. Finally, a set of 6°–8° (medium‐f) simulations fails to fully self‐aggregate, producing convection across most of the domain through the full 100‐day simulation. The combination of relatively weak diabatic feedbacks and a negative advective feedback prevents SA from completing in this group. The advective feedback becomes more negative with increasing rotation, but high‐fsimulations compensate by having sufficiently strong surface flux feedbacks to support TC genesis.

 
more » « less
Award ID(s):
1830724
NSF-PAR ID:
10368390
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
5
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The spontaneous self-aggregation (SA) of convection in idealized model experiments highlights the importance of interactions between tropical convection and the surrounding environment. The authors have shown that SA fundamentally changes with the background rotation in previousf-plane simulations, in terms of both the resulting forms of organized convection and the relative roles of the physical feedbacks driving them. This study considers the dependence of SA on rotation in one large domain on theβplane, introducing an additional layer of complexity. Simulations are performed with uniform thermal forcing and explicit convection. Focuses include statistical and structural analysis of the convective modes, process-oriented diagnostics of how they develop, and resulting mean states. Two regimes of SA emerge within the first 15 days, separated by a critical zone wherefis analogous to 10°–15° latitude. Organized convection at near-equatorial values offprimarily consists of convectively coupled Kelvin waves. Wind speed–surface enthalpy flux feedbacks are the dominant process driving moisture variability early on, then clear-sky shortwave radiative feedbacks are strongest in wave maintenance. In contrast, at higherf, numerous tropical cyclones develop and coexist, dominated by surface flux and longwave processes. Tropical cyclogenesis is most pronounced at intermediatef(analogous to 25°–40°), but are longer-lived at higherf. The resulting modes of SA at lowfdiffer between theseβ-plane simulations (convectively coupled waves) and priorf-plane simulations (weak tropical cyclones or nonrotating clusters). Otherwise, these results provide further evidence for the changing roles of radiative, surface flux, and advective processes in influencing SA asfchanges, as found in our previous study.

    Significance Statement

    In model simulations, convection often self-organizes due to interactions with its surrounding environment. These interactions are relevant in the real-world organization of rainfall and clouds, and may thus be useful to understand for improved prediction of tropical weather and climate. Previous work using a set of simple model experiments with constant Coriolis force showed that at different latitudes, different processes dominate, and different types of organized convection result. This study verifies that finding using a more complex and realistic model, where the Coriolis force varies within the domain to resemble different latitudes. Specifically, the convection here self-organizes into atmospheric waves (periodic disturbances) at low latitudes, and tropical cyclones at high latitudes.

     
    more » « less
  2. Abstract

    In a modeled environment of rotating radiative‐convective equilibrium (RCE), convective self‐aggregation may take the form of spontaneous tropical cyclogenesis. We investigate the processes leading to tropical cyclogenesis in idealized simulations with a three‐dimensional cloud‐permitting model configured in rotating RCE, in which the background planetary vorticity is varied acrossf‐plane cases to represent a range of deep tropical and near‐equatorial environments. Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic‐scale forcing. We examine the dynamic and thermodynamic evolution of cyclogenesis in these experiments and compare the physical mechanisms to current theories. All simulations with planetary vorticity corresponding to latitudes from 10°–20° generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five‐member ensemble of 20° simulations, indicating large stochastic variability. Shared across the 10°–20° group is the emergence of a midlevel vortex in the days leading to genesis, which has dynamic and thermodynamic implications on its environment that facilitate the spin‐up of a low‐level vortex. Tropical cyclogenesis is possible in this model at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self‐aggregates into a quasicircular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by strong near‐surface inflow that is already established days prior. Other experiments at these lower Coriolis parameters instead self‐aggregate into a nonrotating elongated band and fail to undergo cyclogenesis over the 100‐day simulation.

     
    more » « less
  3. Abstract

    Tropical cyclone intensification processes are explored in six high-resolution climate models. The analysis framework employs process-oriented diagnostics that focus on how convection, moisture, clouds, and related processes are coupled. These diagnostics include budgets of column moist static energy and the spatial variance of column moist static energy, where the column integral is performed between fixed pressure levels. The latter allows for the quantification of the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclone spinup, including surface flux feedbacks and cloud-radiative feedbacks. Tropical cyclones (TCs) are tracked in the climate model simulations and the analysis is applied along the individual tracks and composited over many TCs. Two methods of compositing are employed: a composite over all TC snapshots in a given intensity range, and a composite over all TC snapshots at the same stage in the TC life cycle (same time relative to the time of lifetime maximum intensity for each storm). The radiative feedback contributes to TC development in all models, especially in storms of weaker intensity or earlier stages of development. Notably, the surface flux feedback is stronger in models that simulate more intense TCs. This indicates that the representation of the interaction between spatially varying surface fluxes and the developing TC is responsible for at least part of the intermodel spread in TC simulation.

     
    more » « less
  4. Abstract A complete understanding of the development of tropical cyclones (TC) remains elusive and forecasting TC intensification remains challenging. This motivates further research into the physical processes that govern TC development. One process that has, until recently, been under-investigated is the role of radiation. Here, the importance of radiative feedbacks in TC development and the mechanisms underlying their influence is investigated in a set of idealized convection-permitting simulations. A TC is allowed to form after initialization from a mesoscale warm, saturated bubble on an f -plane, in an otherwise quiescent and moist neutral environment. Tropical storm formation is delayed by a factor of two or three when radiative feedbacks are removed by prescribing a fixed cooling profile or spatially homogenizing the model-calculated cooling profiles. The TC’s intensification rate is also greater when longwave radiative feedbacks are stronger. Radiative feedbacks in the context of a TC arise from interactions between spatially and temporally varying radiative heating and cooling (driven by the dependence of radiative heating and cooling rate on clouds and water vapor) and the developing TC (the circulation of which shapes the structure of clouds and water vapor). Further analysis and additional mechanism denial experiments pinpoint the longwave radiative feedback contributed by ice clouds as the strongest influence. Improving the representation of cloud-radiative feedbacks in forecast models therefore has the potential to yield critical advancements in TC prediction. 
    more » « less
  5. The sensitivity of the climate to CO2forcing depends on spatially varying radiative feedbacks that act both locally and nonlocally. We assess whether a method employing multiple regression can be used to estimate local and nonlocal radiative feedbacks from internal variability. We test this method on millennial-length simulations performed with six coupled atmosphere–ocean general circulation models (AOGCMs). Given the spatial pattern of warming, the method does quite well at recreating the top-of-atmosphere flux response for most regions of Earth, except over the Southern Ocean where it consistently overestimates the change, leading to an overestimate of the sensitivity. For five of the six models, the method finds that local feedbacks are positive due to cloud processes, balanced by negative nonlocal shortwave cloud feedbacks associated with regions of tropical convection. For four of these models, the magnitudes of both are comparable to the Planck feedback, so that changes in the ratio between them could lead to large changes in climate sensitivity. The positive local feedback explains why observational studies that estimate spatial feedbacks using only local regressions predict an unstable climate. The method implies that sensitivity in these AOGCMs increases over time due to a reduction in the share of warming occurring in tropical convecting regions and the resulting weakening of associated shortwave cloud and longwave clear-sky feedbacks. Our results provide a step toward an observational estimate of time-varying climate sensitivity by demonstrating that many aspects of spatial feedbacks appear to be the same between internal variability and the forced response.

     
    more » « less