skip to main content

Title: Visual Distraction Disrupts Category-tuned Attentional Filters in Ventral Visual Cortex
Abstract

Our behavioral goals shape how we process information via attentional filters that prioritize goal-relevant information, dictating both where we attend and what we attend to. When something unexpected or salient appears in the environment, it captures our spatial attention. Extensive research has focused on the spatiotemporal aspects of attentional capture, but what happens to concurrent nonspatial filters during visual distraction? Here, we demonstrate a novel, broader consequence of distraction: widespread disruption to filters that regulate category-specific object processing. We recorded fMRI while participants viewed arrays of face/house hybrid images. On distractor-absent trials, we found robust evidence for the standard signature of category-tuned attentional filtering: greater BOLD activation in fusiform face area during attend-faces blocks and in parahippocampal place area during attend-houses blocks. However, on trials where a salient distractor (white rectangle) flashed abruptly around a nontarget location, not only was spatial attention captured, but the concurrent category-tuned attentional filter was disrupted, revealing a boost in activation for the to-be-ignored category. This disruption was robust, resulting in errant processing—and early on, prioritization—of goal-inconsistent information. These findings provide a direct test of the filter disruption theory: that in addition to disrupting spatial attention, distraction also disrupts nonspatial attentional filters tuned to more » goal-relevant information. Moreover, these results reveal that, under certain circumstances, the filter disruption may be so profound as to induce a full reversal of the attentional control settings, which carries novel implications for both theory and real-world perception.

« less
Authors:
; ;
Award ID(s):
1848939
Publication Date:
NSF-PAR ID:
10368421
Journal Name:
Journal of Cognitive Neuroscience
Volume:
34
Issue:
8
Page Range or eLocation-ID:
p. 1521-1533
ISSN:
0898-929X
Publisher:
DOI PREFIX: 10.1162
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Selective attention improves sensory processing of relevant information but can also impact the quality of perception. For example, attention increases visual discrimination performance and at the same time boosts apparent stimulus contrast of attended relative to unattended stimuli. Can attention also lead to perceptual distortions of visual representations? Optimal tuning accounts of attention suggest that processing is biased towards “off-tuned” features to maximize the signal-to-noise ratio in favor of the target, especially when targets and distractors are confusable. Here, we tested whether such tuning gives rise to phenomenological changes of visual features. We instructed participants to select a color among other colors in a visual search display and subsequently asked them to judge the appearance of the target color in a 2-alternative forced choice task. Participants consistently judged the target color to appear more dissimilar from the distractor color in feature space. Critically, the magnitude of these perceptual biases varied systematically with the similarity between target and distractor colors during search, indicating that attentional tuning quickly adapts to current task demands. In control experiments we rule out possible non-attentional explanations such as color contrast or memory effects. Overall, our results demonstrate that selective attention warps the representational geometry ofmore »color space, resulting in profound perceptual changes across large swaths of feature space. Broadly, these results indicate that efficient attentional selection can come at a perceptual cost by distorting our sensory experience.

    « less
  2. Feature-based attention is known to enhance visual processing globally across the visual field, even at task-irrelevant locations. Here, we asked whether attention to object categories, in particular faces, shows similar location-independent tuning. Using EEG, we measured the face-selective N170 component of the EEG signal to examine neural responses to faces at task-irrelevant locations while participants attended to faces at another task-relevant location. Across two experiments, we found that visual processing of faces was amplified at task-irrelevant locations when participants attended to faces relative to when participants attended to either buildings or scrambled face parts. The fact that we see this enhancement with the N170 suggests that these attentional effects occur at the earliest stage of face processing. Two additional behavioral experiments showed that it is easier to attend to the same object category across the visual field relative to two distinct categories, consistent with object-based attention spreading globally. Together, these results suggest that attention to high-level object categories shows similar spatially global effects on visual processing as attention to simple, individual, low-level features.
  3. Visual working memory (VWM) representations interact with attentional guidance, but there is controversy over whether multiple VWM items simultaneously influence attentional guidance. Extant studies relied on continuous variables like response times, which can obscure capture – especially if VWM representations cycle through interactive and non-interactive states. Previous conflicting findings regarding guidance when under high working memory (WM) load may be due to the use of noisier response time measures that mix capture and non-capture trials. Thus, we employed an oculomotor paradigm to characterize discrete attentional capture events under both high and low VWM load. Participants held one or two colors in memory, then executed a saccade to a target disk. On some trials, a distractor (sometimes VWM-matching) appeared simultaneously with the target. Eye movements were more frequently directed to a VWM-matching than a non-matching distractor for both load conditions. However, oculomotor capture by a VWM-matching distractor occurred less frequently under high compared with low load. These results suggest that attention is automatically guided toward items matching only one of two colors held in memory at a time, suggesting that items in VWM may cycle through attention-guiding and not-guiding states when more than one item is held in VWM and themore »task does not require that multiple items be maintained in an active, attention-guiding state.« less
  4. Studies of voluntary visual-spatial attention have used attention-directing cues, such as arrows, to induce or instruct observers to focus selective attention on relevant locations in visual space in order to detect or discriminate subsequent target stimuli. In everyday vision, however, voluntary attention is influenced by a host of factors, most of which are quite different from the laboratory paradigms that utilize attention-directing cues. These factors include priming, experience, reward, meaning, motivations, and high-level behavioral goals. Attention that is endogenously directed in the absence of external attention-directing cues has been referred to as self-initiated attention, or as in our prior work, as “willed attention” where volunteers decide where to attend in respond to a prompt to do so. Here, we used a novel paradigm that eliminated external influences (i.e., attention-directing cues and prompts) about where and/or when spatial attention should be directed. Using machine learning decoding methods, we showed that the well-known lateralization of EEG alpha power during spatial attention was also present during purely self-generated attention. By eliminating explicit cues or prompts that affect the allocation of voluntary attention, this work advances our understanding of the neural correlates of attentional control, and provides steps toward the development of EEG-based brain-computermore »interfaces that tap into human intentions.

    Significance Statement

    Understanding how behavioral goals influence how we allocate our voluntary attention is a central aim in cognitive neuroscience. A dominant paradigm for studying voluntary attention uses external cues (e.g., arrows) to focus spatial attention. However, real-world attention can be oriented by purely by self-initiated volitional processes, known aswilledattention. We employed a novel paradigm that allowed participants the freedom to choosewhereandwhento attend within an ongoing stimulus stream, eliminating potential external biases imposed by cues. We used support vector machine decoding off EEG alpha signals to investigate the temporal dynamics of willed attention shifts as volunteers made self-initiated shifts of spatial attention. Such an approach permits the investigation of the neural correlates of purely voluntary attention.

    « less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>