skip to main content


Title: Distributed Neural Systems Support Flexible Attention Updating during Category Learning
Abstract To accurately categorize items, humans learn to selectively attend to the stimulus dimensions that are most relevant to the task. Models of category learning describe how attention changes across trials as labeled stimuli are progressively observed. The Adaptive Attention Representation Model (AARM), for example, provides an account in which categorization decisions are based on the perceptual similarity of a new stimulus to stored exemplars, and dimension-wise attention is updated on every trial in the direction of a feedback-based error gradient. As such, attention modulation as described by AARM requires interactions among processes of orienting, visual perception, memory retrieval, prediction error, and goal maintenance to facilitate learning. The current study explored the neural bases of attention mechanisms using quantitative predictions from AARM to analyze behavioral and fMRI data collected while participants learned novel categories. Generalized linear model analyses revealed patterns of BOLD activation in the parietal cortex (orienting), visual cortex (perception), medial temporal lobe (memory retrieval), basal ganglia (prediction error), and pFC (goal maintenance) that covaried with the magnitude of model-predicted attentional tuning. Results are consistent with AARM's specification of attention modulation as a dynamic property of distributed cognitive systems.  more » « less
Award ID(s):
1847603
NSF-PAR ID:
10421956
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Cognitive Neuroscience
Volume:
34
Issue:
10
ISSN:
0898-929X
Page Range / eLocation ID:
1761 to 1779
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Category learning and visual perception are fundamentally interactive processes, such that successful categorization often depends on the ability to make fine visual discriminations between stimuli that vary on continuously valued dimensions. Research suggests that category learning can improve perceptual discrimination along the stimulus dimensions that predict category membership and that these perceptual enhancements are a byproduct of functional plasticity in the visual system. However, the precise mechanisms underlying learning-dependent sensory modulation in categorization are not well understood. We hypothesized that category learning leads to a representational sharpening of underlying sensory populations tuned to values at or near the category boundary. Furthermore, such sharpening should occur largely during active learning of new categories. These hypotheses were tested using fMRI and a theoretically constrained model of vision to quantify changes in the shape of orientation representations while human adult subjects learned to categorize physically identical stimuli based on either an orientation rule (N = 12) or an orthogonal spatial frequency rule (N = 13). Consistent with our predictions, modeling results revealed relatively enhanced reconstructed representations of stimulus orientation in visual cortex (V1–V3) only for orientation rule learners. Moreover, these reconstructed representations varied as a function of distance from the category boundary, such that representations for challenging stimuli near the boundary were significantly sharper than those for stimuli at the category centers. These results support an efficient model of plasticity wherein only the sensory populations tuned to the most behaviorally relevant regions of feature space are enhanced during category learning.

     
    more » « less
  2. Abstract

    Rhythm perception depends on the ability to predict the onset of rhythmic events. Previous studies indicate beta band modulation is involved in predicting the onset of auditory rhythmic events (Fujioka et al., 2009, 2012; Snyder & Large, 2005). We sought to determine if similar processes are recruited for prediction of visual rhythms by investigating whether beta band activity plays a role in a modality‐dependent manner for rhythm perception. We looked at electroencephalography time–frequency neural correlates of prediction using an omission paradigm with auditory and visual rhythms. By using omissions, we can separate out predictive timing activity from stimulus‐driven activity. We hypothesized that there would be modality‐independent markers of rhythm prediction in induced beta band oscillatory activity, and our results support this hypothesis. We find induced and evoked predictive timing in both auditory and visual modalities. Additionally, we performed an exploratory‐independent components‐based spatial clustering analysis, and describe all resulting clusters. This analysis reveals that there may be overlapping networks of predictive beta activity based on common activation in the parietal and right frontal regions, auditory‐specific predictive beta in bilateral sensorimotor regions, and visually specific predictive beta in midline central, and bilateral temporal/parietal regions. This analysis also shows evoked predictive beta activity in the left sensorimotor region specific to auditory rhythms and implicates modality‐dependent networks for auditory and visual rhythm perception.

     
    more » « less
  3. The functions of an autonomous system can generally be partitioned into those concerned with perception and those concerned with action. Perception builds and maintains an internal model of the world (i.e., the system's environment) that is used to plan and execute actions to accomplish a goal established by human supervisors. Accordingly, assurance decomposes into two parts: a) ensuring that the model is an accurate representation of the world as it changes through time and b) ensuring that the actions are safe (and e ective), given the model. Both perception and action may employ AI, including machine learning (ML), and these present challenges to assurance. However, it is usually feasible to guard the actions with traditionally engineered and assured monitors, and thereby ensure safety, given the model. Thus, the model becomes the central focus for assurance. We propose an architecture and methods to ensure the accuracy of models derived from sensors whose interpretation uses AI and ML. Rather than derive the model from sensors bottom-up, we reverse the process and use the model to predict sensor interpretation. Small prediction errors indicate the world is evolving as expected and the model is updated accordingly. Large prediction errors indicate surprise, which may be due to errors in sensing or interpretation, or unexpected changes in the world (e.g., a pedestrian steps into the road). The former initiate error masking or recovery, while the latter requires revision to the model. Higher-level AI functions assist in diagnosis and execution of these tasks. Although this two-level architecture where the lower level does \predictive processing" and the upper performs more re ective tasks, both focused on maintenance of a world model, is derived by engineering considerations, it also matches a widely accepted theory of human cognition. 
    more » « less
  4. Abstract

    When searching for an object in a cluttered scene, we can use our memory of the target object features to guide our search, and the responses of neurons in multiple cortical visual areas are enhanced when their receptive field contains a stimulus sharing target object features. Here we tested the role of the ventral prearcuate region (VPA) of prefrontal cortex in the control of feature attention in cortical visual area V4. VPA was unilaterally inactivated in monkeys performing a free-viewing visual search for a target stimulus in an array of stimuli, impairing monkeys’ ability to find the target in the array in the affected hemifield, but leaving intact their ability to make saccades to targets presented alone. Simultaneous recordings in V4 revealed that the effects of feature attention on V4 responses were eliminated or greatly reduced while leaving the effects of spatial attention on responses intact. Altogether, the results suggest that feedback from VPA modulates processing in visual cortex during attention to object features.

     
    more » « less
  5. Prefrontal cortex modulates sensory signals in extrastriate visual cortex, in part via its direct projections from the frontal eye field (FEF), an area involved in selective attention. We find that working memory-related activity is a dominant signal within FEF input to visual cortex. Although this signal alone does not evoke spiking responses in areas V4 and MT during memory, the gain of visual responses in these areas increases, and neuronal receptive fields expand and shift towards the remembered location, improving the stimulus representation by neuronal populations. These results provide a basis for enhancing the representation of working memory targets and implicate persistent FEF activity as a basis for the interdependence of working memory and selective attention. 
    more » « less