This paper is focused on the modeling of a brazed plate heat exchanger (BPHE) for a novel in-rack cooling loop coupled with heat recovery capability for enhanced thermal management of datacenters. In the proposed technology, the BPHE is acting as a condenser, and the model presented in this study can be applied in either the cooling loop or vapor recompression loop. Thus, the primary fluid enters as either superheated (in the vapor recompression loop) or saturated vapor (in the cooling loop), while the secondary fluid enters as a sub-cooled liquid. The model augments an existing technique from the open literature and is applied to condensation of a low-pressure refrigerant R245fa. The model assumes a two-fluid heat exchanger with R245fa and water as the primary and secondary fluids, respectively, flowing in counterflow configuration; however, the model can also handle parallel flow configuration. The 2-D model divides the heat exchanger geometry into a discrete number of slices to analyze heat transfer and pressure drops (including static, momentum and frictional losses) of both fluids, which are used to predict the exit temperature and pressure of both fluids. The model predicts the exchanger duty based on the local energy balance. The predicted values of fluid output properties (secondary fluid temperature and pressure, and primary fluid vapor quality and pressure) along with heat exchanger duty show good agreement when compared against a commercial software.
Advancing a microscopic framework that rigorously unveils the underlying topological hallmarks of fractional quantum Hall (FQH) fluids is a prerequisite for making progress in the classification of strongly-coupled topological matter. We present a second-quantization framework that reveals an exact fusion mechanism for particle fractionalization in FQH fluids, and uncovers the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level. We show the first exact analytic computation of the quasielectron Berry connections leading to its fractional charge and exchange statistics, and perform Monte Carlo simulations that numerically confirm the fusion mechanism for quasiparticles. We express the sequence of (bosonic and fermionic) Laughlin second-quantized states, highlighting the lack of local condensation, and present a rigorous constructive subspace bosonization dictionary for the bulk fluid. Finally, we establish universal long-distance behavior of edge excitations by formulating a conjecture based on the DNA, or root state, of the FQH fluid.
more » « less- Award ID(s):
- 2029401
- PAR ID:
- 10368481
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Extensive research concerns dropwise condensation of low surface tension fluids to promote energy efficiency and decarbonization in thermal energy systems. However, it is challenging as these fluids typically result in filmwise condensation. Drawing inspiration from the Namib desert beetle that enhances condensation through patterned wettability, conventional beetle‐inspired surfaces excel in water condensation but flood when condensing low surface tension fluids. In this work, a patterned quasi‐liquid surface is reported that achieves exceptional dropwise condensation of low surface tension fluids. The surface consists of alternating stripes with low surface energy, that is, a perfluoropolyether (PFPE) and fluorinated quasi‐liquid surface (FQLS), that shows ultralow contact angle hysteresis for ethanol and hexane. The PFPE stripes are slightly more slippery, acting as slippery bridges that accelerate droplet coalescence and removal. It is experimentally demonstrated that the striped PFPE‐FQLS pattern exhibits a heat transfer coefficient 85%, 330%, and 550% higher than that of PFPE, fluorinated silane, and filmwise condensation, respectively. This study reveals that a high contact angle is desired to sustain dropwise condensation, irrespective of contact angle hysteresis. These findings provide a new paradigm for promoting the dropwise condensation of low surface tension fluids and offer valuable insights into surface design for energy sustainability.
-
Summary We present a spatially varying Robin interface condition for solving fluid‐structure interaction problems involving incompressible fluid flows and nonuniform flexible structures. Recent studies have shown that for uniform structures with constant material and geometric properties, a constant one‐parameter Robin interface condition can improve the stability and accuracy of partitioned numerical solution procedures. In this work, we generalize the parameter to a spatially varying function that depends on the structure's local material and geometric properties, without varying the exact solution of the coupled fluid‐structure system. We present an algorithm to implement the Robin interface condition in an embedded boundary method for coupling a projection‐based incompressible viscous flow solver with a nonlinear finite element structural solver. We demonstrate the numerical effects of the spatially varying Robin interface condition using two example problems: a simplified model problem featuring a nonuniform Euler‐Bernoulli beam interacting with an inviscid flow and a generalized Turek‐Hron problem featuring a nonuniform, highly flexible beam interacting with a viscous laminar flow. Both cases show that a spatially varying Robin interface condition can clearly improve numerical accuracy (by up to two orders of magnitude in one instance) for the same computational cost. Using the second example problem, we also demonstrate and compare two models for determining the local value of the combination function in the Robin interface condition.
-
A bstract Euler hydrodynamics of perfect fluids can be viewed as an effective bosonic field theory. In cases when the underlying microscopic system involves Dirac fermions, the quantum anomalies should be properly described. In 1+1 dimensions the action formulation of hydrodynamics at zero temperature is reconsidered and shown to be equal to standard field-theory bosonization. Furthermore, it can be derived from a topological gauge theory in one extra dimension, which identifies the fluid variables through the anomaly inflow relations. Extending this framework to 3+1 dimensions yields an effective field theory/hydrodynamics model, capable of elucidating the mixed axial-vector and axial-gravitational anomalies of Dirac fermions. This formulation provides a platform for bosonization in higher dimensions. Moreover, the connection with 4+1 dimensional topological theories suggests some generalizations of fluid dynamics involving additional degrees of freedom.
-
We present exact analytical results for the Caputo fractional derivative ofa wide class of elementary functions, including trigonometric andinverse trigonometric, hyperbolic and inverse hyperbolic, Gaussian,quartic Gaussian, Lorentzian, and shifted polynomial functions. Theseresults are especially important for multi-scale physical systems, suchas porous materials, disordered media, and turbulent fluids, in whichtransport is described by fractional partial differential equations. Theexact results for the Caputo fractional derivative are obtained from a singlegeneralized Euler’s integral transform of the generalized hypergeometricfunction with a power-law argument. We present a proof of thegeneralized Euler’s integral transform and directly apply it to theexact evaluation of the Caputo fractional derivative of a broad spectrum offunctions, provided that these functions can be expressed in terms of ageneralized hypergeometric function with a power-law argument. Wedetermine that the Caputo fractional derivative of elementary functions isgiven by the generalized hypergeometric function. Moreover, we show thatin the most general case the final result cannot be reduced toelementary functions, in contrast to both the Liouville-Caputo and Fourier fractionalderivatives. However, we establish that in the infinite limit of theargument of elementary functions, all three definitions of a fractionalderivative - the Coputo, Liouville-Caputo, and Fourier - converge to the same result given by theelementary functions. Finally, we prove the equivalence between Liouville-Caputo and Fourierfractional derivatives.more » « less