skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: A spatially varying robin interface condition for fluid‐structure coupled simulations
Summary

We present a spatially varying Robin interface condition for solving fluid‐structure interaction problems involving incompressible fluid flows and nonuniform flexible structures. Recent studies have shown that for uniform structures with constant material and geometric properties, a constant one‐parameter Robin interface condition can improve the stability and accuracy of partitioned numerical solution procedures. In this work, we generalize the parameter to a spatially varying function that depends on the structure's local material and geometric properties, without varying the exact solution of the coupled fluid‐structure system. We present an algorithm to implement the Robin interface condition in an embedded boundary method for coupling a projection‐based incompressible viscous flow solver with a nonlinear finite element structural solver. We demonstrate the numerical effects of the spatially varying Robin interface condition using two example problems: a simplified model problem featuring a nonuniform Euler‐Bernoulli beam interacting with an inviscid flow and a generalized Turek‐Hron problem featuring a nonuniform, highly flexible beam interacting with a viscous laminar flow. Both cases show that a spatially varying Robin interface condition can clearly improve numerical accuracy (by up to two orders of magnitude in one instance) for the same computational cost. Using the second example problem, we also demonstrate and compare two models for determining the local value of the combination function in the Robin interface condition.

 
more » « less
Award ID(s):
1706003 1751487
PAR ID:
10449294
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Volume:
122
Issue:
19
ISSN:
0029-5981
Page Range / eLocation ID:
p. 5176-5203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A high-order in space spectral-element methodology for the solution of a strongly coupled fluid-structure interaction (FSI) problem is developed. A methodology is based on a partitioned solution of incompressible fluid equations on body-fitted grids, and nonlinearly-elastic solid deformation equations coupled via a fixed-point iteration approach with Aitken relaxation. A comprehensive verification strategy of the developed methodology is presented, including h-, p-and temporal refinement studies. An expected order of convergence is demonstrated first separately for the corresponding fluid and solid solvers, followed by a self-convergence study on a coupled FSI problem (self-convergence refers to a convergence to a reference solution obtained with the same solver at higher resolution). To this end, a new three-dimensional fluid-structure interaction benchmark is proposed for a verification of the FSI codes, which consists of a fluid flow in a channel with one rigid and one flexible wall. It is shown that, due to a consistent problem formulation, including initial and boundary conditions, a high-order spatial convergence on a fully coupled FSI problem can be demonstrated. Finally, a developed framework is applied successfully to a Direct Numerical Simulation of a turbulent flow in a channel interacting with a compliant wall, where the fluid-structure interface is fully resolved. 
    more » « less
  2. Abstract

    The paper discusses a reuse of matrix factorization as a building block in the Augmented Lagrangian (AL) and modified AL preconditioners for nonsymmetric saddle point linear algebraic systems. The strategy is applied to solve two‐dimensional incompressible fluid problems with efficiency rates independent of the Reynolds number. The solver is then tested to simulate motion of a surface fluid, an example of a two‐dimensional flow motivated by an interest in lateral fluidity of inextensible viscous membranes. Numerical examples include the Kelvin–Helmholtz instability problem posed on the sphere and on the torus. Some new eigenvalue estimates for the AL preconditioner are derived.

     
    more » « less
  3. We prove the existence of a weak solution to a fluid-structure interaction (FSI) problem between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations, and a poroviscoelastic medium modeled by the Biot equations. The two are nonlinearly coupled over an interface with mass and elastic energy, modeled by a reticular plate equation, which is transparent to fluid flow. The existence proof is constructive, consisting of two steps. First, the existence of a weak solution to a regularized problem is shown. Next, a weak-classical consistency result is obtained, showing that the weak solution to the regularized problem converges, as the regularization parameter approaches zero, to a classical solution to the original problem, when such a classical solution exists. While the assumptions in the first step only require the Biot medium to be poroelastic, the second step requires additional regularity, namely, that the Biot medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem with nonlinear coupling involving a Biot model for poro(visco)elastic media. 
    more » « less
  4. Abstract

    This work focuses on modeling the interaction between an incompressible, viscous fluid and a poroviscoelastic material. The fluid flow is described using the time‐dependent Stokes equations, and the poroelastic material using the Biot model. The viscoelasticity is incorporated in the equations using a linear Kelvin–Voigt model. We introduce two novel, noniterative, partitioned numerical schemes for the coupled problem. The first method uses the second‐order backward differentiation formula (BDF2) for implicit integration, while treating the interface terms explicitly using a second‐order extrapolation formula. The second method is the Crank–Nicolson and Leap‐Frog (CNLF) method, where the Crank–Nicolson method is used to implicitly advance the solution in time, while the coupling terms are explicitly approximated by the Leap‐Frog integration. We show that the BDF2 method is unconditionally stable and uniformly stable in time, while the CNLF method is stable under a CFL condition. Both schemes are validated using numerical simulations. Second‐order convergence in time is observed for both methods. Simulations over a longer period of time show that the errors in the solution remain bounded. Cases when the structure is poroviscoelastic and poroelastic are included in numerical examples.

     
    more » « less
  5. In this paper, we study the normal mode solutions of 3D incompressible viscous fluid flow models. The obtained theoretical results are then applied to analyze several time-stepping schemes for the numerical solutions of the 3D incompressible fluid flow models. 
    more » « less