Abstract The identification of orthologs—genes in different species which descended from the same gene in their last common ancestor—is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases.
more »
« less
The Quest for Orthologs orthology benchmark service in 2022
Abstract The Orthology Benchmark Service (https://orthology.benchmarkservice.org) is the gold standard for orthology inference evaluation, supported and maintained by the Quest for Orthologs consortium. It is an essential resource to compare existing and new methods of orthology inference (the bedrock for many comparative genomics and phylogenetic analysis) over a standard dataset and through common procedures. The Quest for Orthologs Consortium is dedicated to maintaining the resource up to date, through regular updates of the Reference Proteomes and increasingly accessible data through the OpenEBench platform. For this update, we have added a new benchmark based on curated orthology assertion from the Vertebrate Gene Nomenclature Committee, and provided an example meta-analysis of the public predictions present on the platform.
more »
« less
- Award ID(s):
- 1917302
- PAR ID:
- 10368518
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 50
- Issue:
- W1
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- p. W623-W632
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology—evolutionary relatedness—is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit—from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.more » « less
-
There are two approaches to automatically deriving symbolic worst-case resource bounds for programs: static analysis of the source code and data-driven analysis of cost measurements obtained by running the program. Static resource analysis is usually sound but incomplete. Data-driven analysis can always return a result, but its lack of robustness often leads to unsound results. This paper presents the design, implementation, and empirical evaluation of hybrid resource bound analyses that tightly integrate static analysis and data-driven analysis. The static analysis part builds on automatic amortized resource analysis (AARA), a state-of-the-art type-based resource analysis method that performs cost bound inference using linear optimization. The data-driven part is rooted in novel Bayesian modeling and inference techniques that improve upon previous data-driven analysis methods by reporting an entire probability distribution over likely resource cost bounds. A key innovation is a new type inference system calledHybrid AARAthat coherently integrates Bayesian inference into conventional AARA, combining the strengths of both approaches. Hybrid AARA is proven to be statistically sound under standard assumptions on the runtime cost data. An experimental evaluation on a challenging set of benchmarks shows that Hybrid AARA (i) effectively mitigates the incompleteness of purely static resource analysis; and (ii) is more accurate and robust than purely data-driven resource analysis.more » « less
-
Morrell, P L (Ed.)Abstract With the rapid rise in availability of high-quality genomes for closely related species, methods for orthology inference that incorporate synteny are increasingly useful. Polyploidy perturbs the 1:1 expected frequencies of orthologs between two species, complicating the identification of orthologs. Here we present a method of ortholog inference, Ploidy-aware Syntenic Orthologous Networks Identified via Collinearity (pSONIC). We demonstrate the utility of pSONIC using four species in the cotton tribe (Gossypieae), including one allopolyploid, and place between 75% and 90% of genes from each species into nearly 32,000 orthologous groups, 97% of which consist of at most singletons or tandemly duplicated genes—58.8% more than comparable methods that do not incorporate synteny. We show that 99% of singleton gene groups follow the expected tree topology and that our ploidy-aware algorithm recovers 97.5% identical groups when compared to splitting the allopolyploid into its two respective subgenomes, treating each as separate “species.”more » « less
-
Thorne, Jeffrey (Ed.)Abstract Phylogenetic inference from genome-wide data (phylogenomics) has revolutionized the study of evolution because it enables accounting for discordance among evolutionary histories across the genome. To this end, summary methods have been developed to allow accurate and scalable inference of species trees from gene trees. However, most of these methods, including the widely used ASTRAL, can only handle single-copy gene trees and do not attempt to model gene duplication and gene loss. As a result, most phylogenomic studies have focused on single-copy genes and have discarded large parts of the data. Here, we first propose a measure of quartet similarity between single-copy and multicopy trees that accounts for orthology and paralogy. We then introduce a method called ASTRAL-Pro (ASTRAL for PaRalogs and Orthologs) to find the species tree that optimizes our quartet similarity measure using dynamic programing. By studying its performance on an extensive collection of simulated data sets and on real data sets, we show that ASTRAL-Pro is more accurate than alternative methods.more » « less
An official website of the United States government
