Abstract Phylogenetic inference from genome-wide data (phylogenomics) has revolutionized the study of evolution because it enables accounting for discordance among evolutionary histories across the genome. To this end, summary methods have been developed to allow accurate and scalable inference of species trees from gene trees. However, most of these methods, including the widely used ASTRAL, can only handle single-copy gene trees and do not attempt to model gene duplication and gene loss. As a result, most phylogenomic studies have focused on single-copy genes and have discarded large parts of the data. Here, we first propose a measure of quartet similarity between single-copy and multicopy trees that accounts for orthology and paralogy. We then introduce a method called ASTRAL-Pro (ASTRAL for PaRalogs and Orthologs) to find the species tree that optimizes our quartet similarity measure using dynamic programing. By studying its performance on an extensive collection of simulated data sets and on real data sets, we show that ASTRAL-Pro is more accurate than alternative methods. more »« less
Species tree inference from multi-copy gene trees has long been a challenge in phylogenomics. The recent method ASTRAL-Pro has made strides by enabling multi-copy gene family trees as input and has been quickly adopted. Yet, its scalability, especially memory usage, needs to improve to accommodate the ever-growing dataset size.
Results
We present ASTRAL-Pro 2, an ultrafast and memory efficient version of ASTRAL-Pro that adopts a placement-based optimization algorithm for significantly better scalability without sacrificing accuracy.
Availability and implementation
The source code and binary files are publicly available at https://github.com/chaoszhang/ASTER; data are available at https://github.com/chaoszhang/A-Pro2_data.
Supplementary information
Supplementary data are available at Bioinformatics online.
Zhang, Chao; Mirarab, Siavash(
, Molecular Biology and Evolution)
Takahashi, Aya
(Ed.)
Abstract Phylogenomic analyses routinely estimate species trees using methods that account for gene tree discordance. However, the most scalable species tree inference methods, which summarize independently inferred gene trees to obtain a species tree, are sensitive to hard-to-avoid errors introduced in the gene tree estimation step. This dilemma has created much debate on the merits of concatenation versus summary methods and practical obstacles to using summary methods more widely and to the exclusion of concatenation. The most successful attempt at making summary methods resilient to noisy gene trees has been contracting low support branches from the gene trees. Unfortunately, this approach requires arbitrary thresholds and poses new challenges. Here, we introduce threshold-free weighting schemes for the quartet-based species tree inference, the metric used in the popular method ASTRAL. By reducing the impact of quartets with low support or long terminal branches (or both), weighting provides stronger theoretical guarantees and better empirical performance than the unweighted ASTRAL. Our simulations show that weighting improves accuracy across many conditions and reduces the gap with concatenation in conditions with low gene tree discordance and high noise. On empirical data, weighting improves congruence with concatenation and increases support. Together, our results show that weighting, enabled by a new optimization algorithm we introduce, improves the utility of summary methods and can reduce the incongruence often observed across analytical pipelines.
Yan, Zhi; Smith, Megan L; Du, Peng; Hahn, Matthew W; Nakhleh, Luay(
, Systematic Biology)
Kubatko, Laura
(Ed.)
Abstract Many recent phylogenetic methods have focused on accurately inferring species trees when there is gene tree discordance due to incomplete lineage sorting (ILS). For almost all of these methods, and for phylogenetic methods in general, the data for each locus are assumed to consist of orthologous, single-copy sequences. Loci that are present in more than a single copy in any of the studied genomes are excluded from the data. These steps greatly reduce the number of loci available for analysis. The question we seek to answer in this study is: what happens if one runs such species tree inference methods on data where paralogy is present, in addition to or without ILS being present? Through simulation studies and analyses of two large biological data sets, we show that running such methods on data with paralogs can still provide accurate results. We use multiple different methods, some of which are based directly on the multispecies coalescent model, and some of which have been proven to be statistically consistent under it. We also treat the paralogous loci in multiple ways: from explicitly denoting them as paralogs, to randomly selecting one copy per species. In all cases, the inferred species trees are as accurate as equivalent analyses using single-copy orthologs. Our results have significant implications for the use of ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to single-copy loci. This will greatly increase the amount of data that can be used for phylogenetic inference.[Gene duplication and loss; incomplete lineage sorting; multispecies coalescent; orthology; paralogy.]
Naranjo, Jaells G; Sither, Charles B; Conant, Gavin C(
, Molecular Phylogenetics and Evolution)
Polyploidy, or whole-genome duplication, is expected to confound the inference of species trees with phyloge- netic methods for two reasons. First, the presence of retained duplicated genes requires the reconciliation of the inferred gene trees to a proposed species tree. Second, even if the analyses are restricted to shared single copy genes, the occurrence of reciprocal gene loss, where the surviving genes in different species are paralogs from the polyploidy rather than orthologs, will mean that such genes will not have evolved under the corresponding species tree and may not produce gene trees that allow inference of that species tree. Here we analyze three different ancient polyploidy events, using synteny-based inferences of orthology and paralogy to infer gene trees from nearly 17,000 sets of homologous genes. We find that the simple use of single copy genes from polyploid organisms provides reasonably robust phylogenetic signals, despite the presence of reciprocal gene losses. Such gene trees are also most often in accord with the inferred species relationships inferred from maximum likelihood models of gene loss after polyploidy: a completely distinct phylogenetic signal present in these genomes. As seen in other studies, however, we find that methods for inferring phylogenetic confidence yield high support values even in cases where the underlying data suggest meaningful conflict in the phylogenetic signals.
Phylogenomics faces a dilemma: on the one hand, most accurate species and gene tree estimation methods are those that co-estimate them; on the other hand, these co-estimation methods do not scale to moderately large numbers of species. The summary-based methods, which first infer gene trees independently and then combine them, are much more scalable but are prone to gene tree estimation error, which is inevitable when inferring trees from limited-length data. Gene tree estimation error is not just random noise and can create biases such as long-branch attraction.
Results
We introduce a scalable likelihood-based approach to co-estimation under the multi-species coalescent model. The method, called quartet co-estimation (QuCo), takes as input independently inferred distributions over gene trees and computes the most likely species tree topology and internal branch length for each quartet, marginalizing over gene tree topologies and ignoring branch lengths by making several simplifying assumptions. It then updates the gene tree posterior probabilities based on the species tree. The focus on gene tree topologies and the heuristic division to quartets enables fast likelihood calculations. We benchmark our method with extensive simulations for quartet trees in zones known to produce biased species trees and further with larger trees. We also run QuCo on a biological dataset of bees. Our results show better accuracy than the summary-based approach ASTRAL run on estimated gene trees.
Availability and implementation
QuCo is available on https://github.com/maryamrabiee/quco.
Supplementary information
Supplementary data are available at Bioinformatics online.
@article{osti_10200298,
place = {Country unknown/Code not available},
title = {ASTRAL-Pro: Quartet-Based Species-Tree Inference despite Paralogy},
url = {https://par.nsf.gov/biblio/10200298},
DOI = {10.1093/molbev/msaa139},
abstractNote = {Abstract Phylogenetic inference from genome-wide data (phylogenomics) has revolutionized the study of evolution because it enables accounting for discordance among evolutionary histories across the genome. To this end, summary methods have been developed to allow accurate and scalable inference of species trees from gene trees. However, most of these methods, including the widely used ASTRAL, can only handle single-copy gene trees and do not attempt to model gene duplication and gene loss. As a result, most phylogenomic studies have focused on single-copy genes and have discarded large parts of the data. Here, we first propose a measure of quartet similarity between single-copy and multicopy trees that accounts for orthology and paralogy. We then introduce a method called ASTRAL-Pro (ASTRAL for PaRalogs and Orthologs) to find the species tree that optimizes our quartet similarity measure using dynamic programing. By studying its performance on an extensive collection of simulated data sets and on real data sets, we show that ASTRAL-Pro is more accurate than alternative methods.},
journal = {Molecular Biology and Evolution},
author = {Zhang, Chao and Scornavacca, Celine and Molloy, Erin K and Mirarab, Siavash},
editor = {Thorne, Jeffrey}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.