Abstract On 2017 August 21, the Airborne Infrared Spectrometer (AIR-Spec) observed the total solar eclipse at an altitude of 14 km from aboard the NSF/NCAR Gulfstream V research aircraft. The instrument successfully observed the five coronal emission lines that it was designed to measure: Six1.431μm, Sxi1.921μm, Feix2.853μm, Mgviii3.028μm, and Siix3.935μm. Characterizing these magnetically sensitive emission lines is an important first step in designing future instruments to monitor the coronal magnetic field, which drives space weather events, as well as coronal heating, structure, and dynamics. The AIR-Spec instrument includes an image stabilization system, feed telescope, grating spectrometer, and slit-jaw imager. This paper details the instrument design, optical alignment method, image processing, and data calibration approach. The eclipse observations are described and the available data are summarized.
more »
« less
New Observations of the IR Emission Corona from the 2019 July 2 Eclipse Flight of the Airborne Infrared Spectrometer
Abstract The Airborne Infrared Spectrometer (AIR-Spec) was commissioned during the 2017 total solar eclipse, when it observed five infrared coronal emission lines from a Gulfstream V research jet owned by the National Science Foundation and operated by the National Center for Atmospheric Research. The second AIR-Spec research flight took place during the 2019 July 2 total solar eclipse across the south Pacific. The 2019 eclipse flight resulted in seven minutes of observations, during which the instrument measured all four of its target emission lines: Sxi1.393μm, Six1.431μm, Sxi1.921μm, and Feix2.853μm. The 1.393μm Sxiline was detected for the first time, and probable first detections were made of Sixi1.934μm and Fex1.947μm. The 2017 AIR-Spec detection of Feixwas confirmed and the first observations were made of the Feixline intensity as a function of solar radius. Telluric absorption features were used to calibrate the wavelength mapping, instrumental broadening, and throughput of the instrument. AIR-Spec underwent significant upgrades in preparation for the 2019 eclipse observation. The thermal background was reduced by a factor of 30, providing a 5.5× improvement in signal-to-noise ratio, and the postprocessed pointing stability was improved by a factor of 5 to <10″ rms. In addition, two imaging artifacts were identified and resolved, improving the spectral resolution and making the 2019 data easier to interpret.
more »
« less
- Award ID(s):
- 1850750
- PAR ID:
- 10368533
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 933
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 82
- Size(s):
- Article No. 82
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Differential emission measure (DEM) inversion methods use the brightness of a set of emission lines to infer the line-of-sight (LOS) distribution of the electron temperature (Te) in the corona. DEM inversions have been traditionally performed with collisionally excited lines at wavelengths in the extreme ultraviolet and X-ray. However, such emission is difficult to observe beyond the inner corona (1.5R⊙), particularly in coronal holes. Given the importance of theTedistribution in the corona for exploring the viability of different heating processes, we introduce an analog of the DEM specifically for radiatively excited coronal emission lines, such as those observed during total solar eclipses (TSEs) and with coronagraphs. This radiative-DEM (R-DEM) inversion utilizes visible and infrared emission lines that are excited by photospheric radiation out to at least 3R⊙. Specifically, we use the Fex(637 nm), Fexi(789 nm), and Fexiv(530 nm) coronal emission lines observed during the 2019 July 2 TSE near solar minimum. We find that, despite a largeTespread in the inner corona, the distribution converges to an almost isothermal yet bimodal distribution beyond 1.4R⊙, withTeranging from 1.1 to 1.4 in coronal holes and from 1.4 to 1.65 MK in quiescent streamers. Application of the R-DEM inversion to the Predictive Science Inc. magnetohydrodynamic simulation for the 2019 eclipse validates the R-DEM method and yields a similar LOSTedistribution to the eclipse data.more » « less
-
Abstract We present the spatially resolved absolute brightness of the Fex, Fexi, and Fexivvisible coronal emission lines from 1.08 to 3.4R⊙, observed during the 2019 July 2 total solar eclipse (TSE). The morphology of the corona was typical of solar minimum, with a dipole field dominance showcased by large polar coronal holes and a broad equatorial streamer belt. The Fexiline is found to be the brightest, followed by Fexand Fexiv(in diskB⊙units). All lines had brightness variations between streamers and coronal holes, where Fexivexhibited the largest variation. However, Fexremained surprisingly uniform with latitude. The Fe line brightnesses are used to infer the relative ionic abundances and line-of-sight-averaged electron temperature (Te) throughout the corona, yielding values from 1.25 to 1.4 MK in coronal holes and up to 1.65 MK in the core of streamers. The line brightnesses and inferredTevalues are then quantitatively compared to the Predictive Science Inc. magnetohydrodynamic model prediction for this TSE. The MHD model predicted the Fe lines rather well in general, while the forward-modeled line ratios slightly underestimated the observationally inferredTewithin 5%–10% averaged over the entire corona. Larger discrepancies in the polar coronal holes may point to insufficient heating and/or other limitations in the approach. These comparisons highlight the importance of TSE observations for constraining models of the corona and solar wind formation.more » « less
-
Abstract This letter capitalizes on a unique set of total solar eclipse observations acquired between 2006 and 2020 in white light, Fexi789.2 nm (Tfexi= 1.2 ± 0.1 MK), and Fexiv530.3 nm (Tfexiv= 1.8 ± 0.1 MK) emission complemented by in situ Fe charge state and proton speed measurements from Advanced Composition Explorer/SWEPAM-SWICS to identify the source regions of different solar wind streams. The eclipse observations reveal the ubiquity of open structures invariably associated with Fexiemission from Fe10+and hence a constant electron temperature,Tc=Tfexi, in the expanding corona. The in situ Fe charge states are found to cluster around Fe10+, independently of the 300–700 km s−1stream speeds, referred to as the continual solar wind. Thus, Fe10+yields the fiducial link between the continual solar wind and itsTfexisources at the Sun. While the spatial distribution of Fexivemission from Fe13+associated with streamers changes throughout the solar cycle, the sporadic appearance of charge states >Fe11+in situ exhibits no cycle dependence regardless of speed. These latter streams are conjectured to be released from hot coronal plasmas at temperatures ≥Tfexivwithin the bulge of streamers and from active regions, driven by the dynamic behavior of prominences magnetically linked to them. The discovery of continual streams of slow, intermediate, and fast solar wind characterized by the sameTfexiin the expanding corona places new constraints on the physical processes shaping the solar wind.more » « less
-
Abstract The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6μm region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii]λ5.34μm and [Arii]λ6.99μm lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ6.91μm, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii] ∼ 180 pc from the AGN that also show highL(H2)/L(PAH) andL([Feii])/L(Pfα) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into the dense interstellar medium between the nucleus and the starburst ring. These resolved mid-infrared observations of the nuclear gas dynamics demonstrate the power of JWST and its high-sensitivity integral-field spectroscopic capability to resolve feedback processes around supermassive black holes in the dusty cores of nearby luminous infrared galaxies.more » « less