Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract On 2017 August 21, the Airborne Infrared Spectrometer (AIR-Spec) observed the total solar eclipse at an altitude of 14 km from aboard the NSF/NCAR Gulfstream V research aircraft. The instrument successfully observed the five coronal emission lines that it was designed to measure: Six1.431μm, Sxi1.921μm, Feix2.853μm, Mgviii3.028μm, and Siix3.935μm. Characterizing these magnetically sensitive emission lines is an important first step in designing future instruments to monitor the coronal magnetic field, which drives space weather events, as well as coronal heating, structure, and dynamics. The AIR-Spec instrument includes an image stabilization system, feed telescope, grating spectrometer, and slit-jaw imager. This paper details the instrument design, optical alignment method, image processing, and data calibration approach. The eclipse observations are described and the available data are summarized.more » « less
-
Abstract We have developed a tracking algorithm to determine the speeds of supra-arcade downflows (SADs) and set up a system to automatically track SADs and measure some interesting parameters. By conducting an analysis of six flares observed by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we detect more smaller and slower SADs than prior work, due to the higher spatial resolution of our observational data. The inclusion of these events with smaller and slower SADs directly results in lower median velocities and widths than in prior work, but the fitted distributions and evolutions of the parameters still show good consistency with prior work. The observed distributions of the widths, speeds, and lifetimes of SADs are consistent with log-normal distributions, indicating that random and unstable processes are responsible for generating SADs during solar eruptions. Also, we find that the fastest SADs occur at approximately the middle of the height ranges. The number of SADs in each image versus time shows that there are “rest phases” of SADs, when few SADs are seen. These findings support the idea that SADs originate from a fluid instability. We compare our results with a numerical simulation that generates SADs using a mixture of the Rayleigh–Taylor instability and the Richtmyer–Meshkov instability, and find that the simulation generates quantities that are consistent with our observational results.more » « less
-
Abstract The Airborne Infrared Spectrometer (AIR-Spec) was commissioned during the 2017 total solar eclipse, when it observed five infrared coronal emission lines from a Gulfstream V research jet owned by the National Science Foundation and operated by the National Center for Atmospheric Research. The second AIR-Spec research flight took place during the 2019 July 2 total solar eclipse across the south Pacific. The 2019 eclipse flight resulted in seven minutes of observations, during which the instrument measured all four of its target emission lines: Sxi1.393μm, Six1.431μm, Sxi1.921μm, and Feix2.853μm. The 1.393μm Sxiline was detected for the first time, and probable first detections were made of Sixi1.934μm and Fex1.947μm. The 2017 AIR-Spec detection of Feixwas confirmed and the first observations were made of the Feixline intensity as a function of solar radius. Telluric absorption features were used to calibrate the wavelength mapping, instrumental broadening, and throughput of the instrument. AIR-Spec underwent significant upgrades in preparation for the 2019 eclipse observation. The thermal background was reduced by a factor of 30, providing a 5.5× improvement in signal-to-noise ratio, and the postprocessed pointing stability was improved by a factor of 5 to <10″ rms. In addition, two imaging artifacts were identified and resolved, improving the spectral resolution and making the 2019 data easier to interpret.more » « less
An official website of the United States government
