skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Effective pathogen removal in sustainable natural fiber Moringa filters

Pathogen contamination of water has a massive impact on global human health. In particular, viruses pose unique challenges to water treatment techniques due to their small size and presence in water as both individual virions and when absorbed onto larger particles. Low-energy water treatment processes such as media filtration are not capable of completely removing viruses owing to their small size. Hence, less sustainable processes with high chemical or energy consumption such as chemical disinfection, ultraviolet irradiation, and membrane filtration are usually required. To overcome high energy and/or chemical requirements for virus treatment, designs for sustainable fiber filters fabricated from minimally processed natural materials for efficient virus (MS2) and bacteria (E. coli) removal are presented in this work. These filters were created by functionalizing readily accessible natural fibers including cotton, silk, and flax with a simple aqueous extract containing cationic proteins fromMoringa oleiferaseeds. The proposed filters offer a comprehensive low cost, low energy, and low environmental impact solution for pathogen removal from water with removals of >7log10(99.99999%) for viruses and bacteria.

more » « less
Award ID(s):
2022971 2027731 1946392 1552571
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Clean Water
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Advanced treated municipal wastewater is an important alternative water source for agricultural irrigation. However, the possible persistence of chemical and microbiological contaminants in these waters raise potential safety concerns with regard to reusing treated wastewater for food crop irrigation. Two low-cost and environmentally-friendly filter media, biochar (BC) and zero-valent iron (ZVI), have attracted great interest in terms of treating reused water. Here, we evaluated the efficacy of BC-, nanosilver-amended biochar- (Ag-BC) and ZVI-sand filters, in reducing contaminants of emerging concern (CECs),Escherichia coli (E. coli)and total bacterial diversity from wastewater effluent. Six experiments were conducted with control quartz sand and sand columns containing BC, Ag-BC, ZVI, BC with ZVI, or Ag-BC with ZVI. After filtration, Ag-BC, ZVI, BC with ZVI and Ag-BC with ZVI demonstrated more than 90% (> 1 log) removal ofE. colifrom wastewater samples, while BC, Ag-BC, BC with ZVI and Ag-BC with ZVI also demonstrated efficient removal of tested CECs. Lower bacterial diversity was also observed after filtration; however, differences were marginally significant. In addition, significantly (p < 0.05) higher bacterial diversity was observed in wastewater samples collected during warmer versus colder months. Leaching of silver ions occurred from Ag-BC columns; however, this was prevented through the addition of ZVI. In conclusion, our data suggest that the BC with ZVI and Ag-BC with ZVI sand filters, which demonstrated more than 99% removal of both CECs andE. coliwithout silver ion release, may be effective, low-cost options for decentralized treatment of reused wastewater.

    Graphical Abstract

    more » « less
  2. Abstract BACKGROUND

    Azoles are an important class of compounds that are widely used as corrosion inhibitors in aircraft de‐icing agents, cooling towers, semiconductor manufacturing and household dishwashing detergents. They also are important moieties in pharmaceutical drugs and fungicides. Azoles are widespread emerging contaminants occurring frequently in water bodies. Azole compounds can potentially cause inhibition towards key biological processes in natural ecosystems and wastewater treatment processes. Of particular concern is the inhibition of azoles to the nitrification process (aerobic oxidation of ammonium). This study investigated the acute toxicity of azole compounds towards the anaerobic ammonia oxidation (anammox) process, which is an important environmental biotechnology gaining traction for nutrient‐nitrogen removal during wastewater treatment. In this study, using batch bioassay techniques, the anammox toxicity of eight commonly occurring azole compounds was evaluated.


    The results show that 1H‐benzotriazole and 5‐methyl‐1H‐benzotriazole had the highest inhibitory effect on the anammox process, causing 50% decrease in anammox activity (IC50) at concentrations of 19.6 and 17.8 mg L−1, respectively. 1H‐imidazole caused less severe toxicity with an IC50of 79.4 mg L−1. The other azole compounds were either nontoxic (1H‐pyrazole, 1H‐1,2,4‐triazole and 1‐methyl‐pyrazole) or at best mildly toxic (1H‐benzotriazole‐5‐carboxylic acid and 3,5‐dimethyl‐1H‐pyrazole) towards the anammox bacteria at the concentrations tested.


    This study showed that most azole compounds tested displayed mild to low or no toxicity towards the anammox bacteria. The anammox bacteria were found to be far less sensitive to azoles compared to nitrifying bacteria. © 2019 Society of Chemical Industry

    more » « less
  3. Improving the microbial quality of agricultural water through filtration can benefit small farms globally. The incorporation of zero-valent iron (ZVI) into sand filters (ZVI–sand) has been effective in reducing E. coli, Listeria spp., and viruses from agricultural water. This study evaluated ZVI–sand filtration in reducing E. coli levels based on influent water type and the percentage of ZVI in sand filters. A ZVI–sand filter (50% ZVI/50% sand) significantly (p < 0.001) reduced E. coli levels in deionized water by more than 1.5 log CFU/mL compared to pond water over six separate trials, indicating that water type impacts E. coli removal. Overall reductions in E. coli in deionized water and pond water were 98.8 ± 1.7% and 63 ± 24.0% (mean ± standard deviation), respectively. Filters constructed from 50% ZVI/50% sand showed slightly more reduction in E. coli in pond water than filters made from a composition of 35% ZVI/65% sand; however, the difference was not statistically significant (p = 0.48). Principal component analysis identified that the turbidity and conductivity of influent water affected E. coli reductions in filtered water in this study. ZVI–sand filtration reduces Escherichia coli levels more effectively in waters that contain low turbidity values. 
    more » « less
  4. Abstract

    Salps are gelatinous planktonic suspension feeders that filter large volumes of water in the food‐dilute open ocean. Their life cycle allows periodic exponential growth and population blooms. Dense swarms of salps have a high grazing impact that can deplete the photic zone of phytoplankton and export huge quantities of organic matter to the deep sea. Previous studies described their feeding manner as mostly nonselective, with larger particles retained at higher efficiencies than small particles. To examine salp diets, we used direct in situ sampling (InEx method) of undisturbed solitarySalpa maxima. Aggregates (“chains”) ofSalpa fusiformisandThalia democraticawere studied using in situ incubations. Our findings suggest that in situ feeding rates are higher than previously reported and that cell removal is size independent with ∼ 1μm picoeukaryotes preferentially removed over both larger eukaryotes and smaller bacteria. The prey : predator size ratios we measured (1 : 104–1 : 105) are an order of magnitude smaller than previously reported values and to the best of our knowledge, are the smallest values reported so far for any planktonic suspension feeders. Despite differences among the three species studied, they had similar prey preferences with no correlation between salp body length and prey size. Our findings shed new light on prey : predator relationships in planktonic systems—in particular, that factors other than size influence filtration efficiency—and suggest that in situ techniques should be devised and applied for the study of suspension feeding in the ocean.

    more » « less
  5. Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant. 
    more » « less