Advanced treated municipal wastewater is an important alternative water source for agricultural irrigation. However, the possible persistence of chemical and microbiological contaminants in these waters raise potential safety concerns with regard to reusing treated wastewater for food crop irrigation. Two low-cost and environmentally-friendly filter media, biochar (BC) and zero-valent iron (ZVI), have attracted great interest in terms of treating reused water. Here, we evaluated the efficacy of BC-, nanosilver-amended biochar- (Ag-BC) and ZVI-sand filters, in reducing contaminants of emerging concern (CECs),
- Award ID(s):
- 1828910
- PAR ID:
- 10433304
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Biochar
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2524-7867
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Improving the microbial quality of agricultural water through filtration can benefit small farms globally. The incorporation of zero-valent iron (ZVI) into sand filters (ZVI–sand) has been effective in reducing E. coli, Listeria spp., and viruses from agricultural water. This study evaluated ZVI–sand filtration in reducing E. coli levels based on influent water type and the percentage of ZVI in sand filters. A ZVI–sand filter (50% ZVI/50% sand) significantly (p < 0.001) reduced E. coli levels in deionized water by more than 1.5 log CFU/mL compared to pond water over six separate trials, indicating that water type impacts E. coli removal. Overall reductions in E. coli in deionized water and pond water were 98.8 ± 1.7% and 63 ± 24.0% (mean ± standard deviation), respectively. Filters constructed from 50% ZVI/50% sand showed slightly more reduction in E. coli in pond water than filters made from a composition of 35% ZVI/65% sand; however, the difference was not statistically significant (p = 0.48). Principal component analysis identified that the turbidity and conductivity of influent water affected E. coli reductions in filtered water in this study. ZVI–sand filtration reduces Escherichia coli levels more effectively in waters that contain low turbidity values.more » « less
-
Nitrogen and fecal indicator bacteria (FIB) in runoff from concentrated animal feeding operations (CAFOs) can impair surface and groundwater quality. Bioretention systems are low impact nature-based technologies that can effectively treat CAFO runoff if modified with an internal water storage zone (IWSZ) or amended with biochar. In this study, the performances of four pilot-scale modified bioretention systems were compared to assess the impacts of (1) amending bioretention media with biochar and (2) planting the systems with Muhlenbergia. The system with both plants and biochar amendment had the best performance, with an average of 5.58 log reduction in E. coli and 98% removal of total nitrogen (TN). All systems treated the first pore volume well as new runoff flushed the treated water from the IWSZ. Biochar improved TN and FIB removal due to its high capacity to adsorb or retain ammonium (NH4+), dissolved organic nitrogen, dissolved organic carbon, and E. coli. Planting improved performance, possibly by increasing rhizosphere microbial activity.
-
Low-impact, green infrastructure systems such as biofilters, particularly when amended with biochar, can help address chemical pollution conveyed via stormwater that is increasingly posing a threat to aquatic ecosystems and groundwater quality. Although removal of organic contaminants including pesticides by biochar-amended systems has been studied, the role of a biofouling layer on contaminant removal, biotransformation, and filter lifetime remains poorly understood. This study evaluated the removal of the pesticides atrazine, imidacloprid, and clothianidin in biologically active biochar-amended columns through complete exhaustion of contaminant removal capacity. The resultant data indicate that biological processes accounted for 20–36% of overall removal in the biochar-amended sand columns. In addition, a combined target and suspect screening approach using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) was employed to evaluate the potential transformation of these three pesticides and release of the transformation products (TPs). All TPs detected in the effluent remained below 2.5% of their respective parent influent concentrations for the duration of the experiment. Furthermore, at a biochar application rate of 0.5 wt%, the presence of an active biofilm prolonged the filter lifetime by 1.8–2.3 times compared to a fouled but inactive filter, where removal was presumably dominated by adsorption only. Scenario modelling estimates showed that biochar-amended biofilters could last at least 17 years before exceeding aquatic life threshold values at biochar-application rates as low as 1 wt% (5 vol%) in a representative case study. Results of this study provide novel insight on pesticide TP formation in biochar-amended biofilters and estimation of filter lifetimes.more » « less
-
Abstract Bacterial cellulose (BC) has excellent material properties and can be produced sustainably through simple bacterial culture, but BC‐producing bacteria lack the extensive genetic toolkits of model organisms such as
Escherichia coli (E. coli ). Here, a simple approach is reported for producing highly programmable BC materials through incorporation of engineeredE. coli . The acetic acid bacteriumGluconacetobacter hansenii is cocultured with engineeredE. coli in droplets of glucose‐rich media to produce robust cellulose capsules, which are then colonized by theE. coli upon transfer to selective lysogeny broth media. It is shown that the encapsulatedE. coli can produce engineered protein nanofibers within the cellulose matrix, yielding hybrid capsules capable of sequestering specific biomolecules from the environment and enzymatic catalysis. Furthermore, capsules are produced which can alter their own bulk physical properties through enzyme‐induced biomineralization. This novel system uses a simple fabrication process, based on the autonomous activity of two bacteria, to significantly expand the functionality of BC‐based living materials. -
Abstract Large quantities of highly toxic organic dyes in industrial wastewater is a persistent challenge in wastewater treatment processes. Here, for highly efficient wastewater treatment, a novel membrane based on bacterial nanocellulose (BNC) loaded with graphene oxide (GO) and palladium (Pd) nanoparticles is demonstrated. This Pd/GO/BNC membrane is realized through the in situ incorporation of GO flakes into BNC matrix during its growth followed by the in situ formation of palladium nanoparticles. The Pd/GO/BNC membrane exhibits highly efficient methylene orange (MO) degradation during filtration (up to 99.3% over a wide range of MO concentrations, pH, and multiple cycles of reuse). Multiple contaminants (a cocktail of 4‐nitrophenol, methylene blue, and rhodamine 6G) can also be effectively treated by Pd/GO/BNC membrane simultaneously during filtration. Furthermore, the Pd/GO/BNC membrane demonstrates stable flux (33.1 L m−2h−1) under 58 psi over long duration. The novel and robust membrane demonstrated here is highly scalable and holds a great promise for wastewater treatment.