skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human pointing motion during interaction with an autonomous blimp
Abstract We investigate the interaction between a human and a miniature autonomous blimp using a wand as pointing device. The wand movement generated by the human is followed by the blimp through a tracking controller. The Vector Integration to Endpoint (VITE) model, previously applied to human–computer interface (HCI), has been applied to model the human generated wand movement when interacting with the blimp. We show that the closed-loop human–blimp dynamics are exponentially stable. Similar to HCI using computer mouse, overshoot motion of the blimp has been observed. The VITE model can be viewed as a special reset controller used by the human to generate wand movements that effectively reduce the overshoot of blimp motion. Moreover, we have observed undershoot motion of the blimp due to its inertia. The asymptotic stability of the human–blimp dynamics is beneficial towards tolerating the undershoot motion of the blimp.  more » « less
Award ID(s):
1828678 1849228
PAR ID:
10368571
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The prediction of microstructure evolution and densification behavior during the spark plasma sintering (SPS) process largely depends on accurate temperature regulation. A loop feedback control algorithm called proportional integral derivative (PID) control is a practical simulation tool, but its coefficients are often determined by an inefficient “trial and error” method. This paper is devoted to proposing a numerical method based on the principles of variable coefficients to construct an optimal linear PID controller in SPS electro-thermal simulations. Different types of temperature profiles were applied to evaluate the feasibility of the proposed method. Simulation results showed that, for temperature profiles conventionally used in SPS cycles, the PID output keeps pace with the desired profile. Characterized by an imperfect time delay and overshoot/undershoot, the constructed PID controller needs further advancement to provide a more satisfactory temperature regulation for non-continuous temperature profiles. The first step towards a numerical rule for the optimal PID controller design was undertaken in this work. It is expected to provide a valuable reference for the advanced electro-thermal modeling of SPS. 
    more » « less
  2. Micro-electromagnetic actuators have been used in many fields and industries for systems such as microftuidic systems, positioning stages, and robotic manipulators. Small-scale electromagnetic actuators are able to provide rapid motion with high positioning accuracy. The actuator presented in this paper utilizes a displacement amplification mechanism to increase the maximum stroke length that can be achieved. The dynamics of this actuator are nonlinear due to the dependence of the applied force on gap distance between the coils and the amplification mechanism. This nonlinearity causes the performance of PID control to vary with respect to the displacement of the actuator. The control method proposed in this paper to limit the overshoot resulting from nonlinearity uses a combination of PID control and robust input shapers. Using robust input shapers to account for parameter variation across the workspace, the combined controller eliminates the overshoot while maintaining short settling times. Simulations are presented to demonstrate the performance of the proposed method. 
    more » « less
  3. Energy expenditure for quadrotor control has a likelihood of being costly given parameter-dependent controllers that are less than optimal. The cost can grow proportionally when applied to multiple quadrotors for tracking and collaborative navigation tasks. This research aims to establish a basic approach to tuning PID (Proportional-Integral-Derivative) parameters for a simulated quadrotor drone. A PID controller for autonomy provides a straightforward method for correcting robotic movement based on its current state. However, applying a PID system to a flight controller poses challenges with an inherently under-actuated system, which includes the likelihood of large overshoots and lengthy adjustment times. To address this, we utilize PSO (Particle Swarm Optimization) for optimizing PID parameters in a simulated quadrotor. The PSO is employed to find optimal PID values for thrust, yaw, and translational movement on x- and y-positions by identifying converging values across randomly created particles. We conducted a set of experiments and compared it to the default PID controller. The experiments demonstrate converging properties for particles that achieve minimal fitness scores, particularly in reducing overshoot. The results indicate that the optimized PID controller outperforms the default PID controller without optimization. Using optimized PID controllers can decrease the amount of positional error during flight and when adjusting position with collaborative navigation and collision avoidance algorithms. 
    more » « less
  4. The self‐powered and autonomous sensors are incredibly important in advanced engineering, especially defence science. The increasing necessity of simple and smart electronics requires to be sustainably flexible, wearable, and waterproof. Triboelectricity has been a widely used mechanism for motion sensing nowadays. Almost all devices based on triboelectricity require contact between two surfaces. Herein, a touchless triboelectric motion sensor for human motion sensing and movement monitoring is developed. The device was primarily fabricated using simple latex (cis‐1,4‐polyisoprene) structures and copper (electrode materials), which make it a very cost‐effective device for sensory applications. The device is tested with specimens of different areas and heights in motion. The maximum output of the device is noted as 12 V at a specimen height of 5 cm. Further different types of human motions are applied in front of the device to ensure low energy sensitivity using triboelectric phenomena. The lightweight smart device precisely provides significant output signals for each movement of the human body which makes the device a prospective medium for motion sensing and movement monitoring which can be applied in the fields of security, energy, and medicine. 
    more » « less
  5. Abstract Catastrophic landslides are often preceded by slow, progressive, accelerating deformation that differs from the persistent motion of slow‐moving landslides. Here, we investigate the motion of a landslide that damaged 12 homes in Rolling Hills Estates (RHE), Los Angeles, California on 8 July 2023, using satellite‐based synthetic aperture radar interferometry (InSAR) and pixel tracking of satellite‐based optical images. To better understand the precursory motion of the RHE landslide, we compared its behavior with local precipitation and with several slow‐moving landslides nearby. Unlike the slow‐moving landslides, we found that RHE was a first‐time progressive failure that failed after one of the wettest years on record. We then applied a progressive failure model to interpret the failure mechanisms and further predict the failure time from the pre‐failure movement of RHE. Our work highlights the importance of monitoring incipient slow motion of landslides, particularly where no discernible historical displacement has been observed. 
    more » « less