skip to main content

Search for: All records

Award ID contains: 1828678

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the interaction between a human and a miniature autonomous blimp using a wand as pointing device. The wand movement generated by the human is followed by the blimp through a tracking controller. The Vector Integration to Endpoint (VITE) model, previously applied to human–computer interface (HCI), has been applied to model the human generated wand movement when interacting with the blimp. We show that the closed-loop human–blimp dynamics are exponentially stable. Similar to HCI using computer mouse, overshoot motion of the blimp has been observed. The VITE model can be viewed as a special reset controller used by the human to generate wand movements that effectively reduce the overshoot of blimp motion. Moreover, we have observed undershoot motion of the blimp due to its inertia. The asymptotic stability of the human–blimp dynamics is beneficial towards tolerating the undershoot motion of the blimp.

  2. We propose an algorithm using method of evolving junctions to solve the optimal path planning problems with piece-wise constant flow fields. In such flow fields, we prove that the optimal trajectories, with respect to a convex Lagrangian in the objective function, must be formed by piece-wise constant velocity motions. Taking advantage of this property, we transform the infinite dimensional optimal control problem into a finite dimensional optimization and use intermittent diffusion to solve the problems. The algorithm is proven to be complete. At last, we demonstrate the performance of the algorithm with various simulation examples.
    Free, publicly-accessible full text available September 3, 2023
  3. The performance of a model predictive controller depends on the accuracy of the objective and prediction model of the system. Although significant efforts have been dedicated to improving the robustness of model predictive control (MPC), they typically do not take a risk-averse perspective. In this paper, we propose a risk-aware MPC framework, which estimates the underlying parameter distribution using online Bayesian learning and derives a risk-aware control policy by reformulating classical MPC problems as Bayesian Risk Optimization (BRO) problems. The consistency of the Bayesian estimator and the convergence of the control policy are rigorously proved. Furthermore, we investigate the consistency requirement and propose a risk monitoring mechanism to guarantee the satisfaction of the consistency requirement. Simulation results demonstrate the effectiveness of the proposed approach.
    Free, publicly-accessible full text available June 8, 2023
  4. We propose a new concept named subschedulability to relax schedulability conditions on task sets in the context of scheduling and control co-design. Subschedulability is less conservative compared to schedulablity requirement with respect to network utilization. But it can still guarantee that all tasks can be executed before or within a bounded time interval after their deadlines. Based on the subschedulability concept, we derive an analytical timing model to check the sub-schedulability and perform online prediction of time-delays caused by real-time scheduling. A modified event-triggered contention-resolving MPC is presented to co-design the scheduling and control for the sub-schedulable control tasks. Simulation results are demonstrated to show the effectiveness of the proposed method.
    Free, publicly-accessible full text available June 8, 2023
  5. In this paper, a constrained cooperative Kalman filter is developed to estimate field values and gradients along trajectories of mobile robots collecting measurements. We assume the underlying field is generated by a polynomial partial differential equation with unknown time-varying parameters. A long short-term memory (LSTM) based Kalman filter, is applied for the parameter estimation leveraging the updated state estimates from the constrained cooperative Kalman filter. Convergence for the constrained cooperative Kalman filter has been justified. Simulation results in a 2-dimensional field are provided to validate the proposed method.
    Free, publicly-accessible full text available June 8, 2023
  6. Free, publicly-accessible full text available May 1, 2023
  7. Free, publicly-accessible full text available January 1, 2023
  8. Free, publicly-accessible full text available January 1, 2023
  9. Free, publicly-accessible full text available December 14, 2022