skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Varying coefficient frailty models with applications in single molecular experiments
Abstract Motivated by an analysis of single molecular experiments in the study of T‐cell signaling, a new model called varying coefficient frailty model with local linear estimation is proposed. Frailty models have been extensively studied, but extensions to nonconstant coefficients are limited to spline‐based methods that tend to produce estimation bias near the boundary. To address this problem, we introduce a local polynomial kernel smoothing technique with a modified expectation‐maximization algorithm to estimate the unknown parameters. Theoretical properties of the estimators, including their unbiased property near the boundary, are derived along with discussions on the asymptotic bias‐variance trade‐off. The finite sample performance is examined by simulation studies, and comparisons with existing spline‐based approaches are conducted to show the potential advantages of the proposed approach. The proposed method is implemented for the analysis of T‐cell signaling. The fitted varying coefficient model provides a rigorous quantification of an early and rapid impact on T‐cell signaling from the accumulation of bond lifetime, which can shed new light on the fundamental understanding of how T cells initiate immune responses.  more » « less
Award ID(s):
1934924
PAR ID:
10368608
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
78
Issue:
2
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 474-486
Size(s):
p. 474-486
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose time‐varying coefficient model selection and estimation based on the spline approach, which is capable of capturing time‐dependent covariate effects. The new penalty function utilizes local‐region information for varying‐coefficient estimation, in contrast to the traditional model selection approach focusing on the entire region. The proposed method is extremely useful when the signals associated with relevant predictors are time‐dependent, and detecting relevant covariate effects in the local region is more scientifically relevant than those of the entire region. Our simulation studies indicate that the proposed model selection incorporating local features outperforms the global feature model selection approaches. The proposed method is also illustrated through a longitudinal growth and health study from National Heart, Lung, and Blood Institute. 
    more » « less
  2. Spatial–temporal data arise frequently in biomedical, environmental, political and social science studies. Capturing dynamic changes of time-varying correlation structure is scientifically important in spatio-temporal data analysis. We approximate the time-varying empirical estimator of the spatial correlation matrix by groups of selected basis matrices representing substructures of the correlation matrix. After projecting the correlation structure matrix onto a space spanned by basis matrices, we also incorporate varying-coefficient model selection and estimation for signals associated with relevant basis matrices. The unique feature of the proposed method is that signals at local regions corresponding with time can be identified through the proposed penalized objective function. Theoretically, we show model selection consistency and the oracle property in detecting local signals for the varying-coefficient estimators. The proposed method is illustrated through simulation studies and brain fMRI data. 
    more » « less
  3. Extensive literature has been proposed for the analysis of correlated survival data. Subjects within a cluster share some common characteristics, e.g., genetic and environmental factors, so their time-to-event outcomes are correlated. The frailty model under proportional hazards assumption has been widely applied for the analysis of clustered survival outcomes. However, the prediction performance of this method can be less satisfactory when the risk factors have complicated effects, e.g., nonlinear and interactive. To deal with these issues, we propose a neural network frailty Cox model that replaces the linear risk function with the output of a feed-forward neural network. The estimation is based on quasi-likelihood using Laplace approximation. A simulation study suggests that the proposed method has the best performance compared with existing methods. The method is applied to the clustered time-to-failure prediction within the kidney transplantation facility using the national kidney transplant registry data from the U.S. Organ Procurement and Transplantation Network. All computer programs are available at https://github.com/rivenzhou/deep_learning_clustered. 
    more » « less
  4. Abstract Mammalian cells are commonly used as hosts in cell culture for biologics production in the pharmaceutical industry. Structured mechanistic models of metabolism have been used to capture complex cellular mechanisms that contribute to varying metabolic shifts in different cell lines. However, little research has focused on the impact of temporal changes in enzyme abundance and activity on the modeling of cell metabolism. In this work, we present a framework for constructing mechanistic models of metabolism that integrate growth‐signaling control of enzyme activity and transcript dynamics. The proposed approach is applied to build models for three Chinese hamster ovary (CHO) cell lines using fed‐batch culture data and time‐series transcript profiles. Leveraging information from the transcriptome data, we develop a parameter estimation approach based on multi‐cell‐line (MCL) learning, which combines data sets from different cell lines and trains the individual cell‐line models jointly to improve model accuracy. The computational results demonstrate the important role of growth signaling and transcript variability in metabolic models as well as the virtue of the MCL approach for constructing cell‐line models with a limited amount of data. The resulting models exhibit a high level of accuracy in predicting distinct metabolic behaviors in the different cell lines; these models can potentially be used to accelerate the process and cell‐line development for the biomanufacturing of new protein therapeutics. 
    more » « less
  5. Human complex diseases are affected by both genetic and environmental factors. When multiple environmental risk factors are present, the interaction effect between a gene and the environmental mixture can be larger than the addition of individual interactions, resulting in the so-called synergistic gene–environment (GxE) interactions. Existing literature has shown the power of synergistic gene-environment interaction analysis with cross-sectional traits. In this work, we propose a functional varying index coefficient model for longitudinal traits together with multiple longitudinal environmental risk factors and assess how the genetic effects on a longitudinal disease trait are nonlinearly modified by a mixture of environmental influences. We derive an estimation procedure for the nonparametric functional varying index coefficients under the quadratic inference function and penalized spline framework. We evaluate some theoretical properties such as estimation consistency and asymptotic normality of the estimates. We further propose a hypothesis testing procedure to assess the significance of the synergistic GxE effect. The performance of the estimation and testing procedure is evaluated through Monte Carlo simulation studies. Finally, the utility of the method is illustrated by a real dataset from a pain sensitivity study in which SNP effects are nonlinearly modulated by a mixture of drug dosages and other environmental variables to affect patients’ blood pressure and heart rate. 
    more » « less