skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanoconfined Crystallization in Poly(lactic acid) (PLA) and Poly(ethylene terephthalate) (PET) Induced by Various Forms of Premelt‐Deformation
Abstract The processing–structure–property relationship using poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET) is explored. Specifically, both pre‐extension and preshear of amorphous PLA and PET above their glass transition temperaturesTg, carried out in the affine deformation limit, can induce a specific type of cold crystallization during annealing, i.e., nanoconfined crystallization (NCC) where crystal sizes are limited to a nanoscopic scale in all dimensions so as to render the processed PLA and PET optically transparent. The new polymer structure after premelt deformation can show considerably enhanced mechanical properties. For example, premelt stretching produces geometric condensation of the chain network. This structural alternation can profoundly change the mechanical characteristics, e.g., turning brittle PLA ductile. In contrast, after preshear of amorphous PLA aboveTg, the NCC containing PLA remains brittle, showing the importance to have geometric condensation from processing. Both AFM imaging and SAXS measurements are performed to verify that premelt deformation of PLA and PET indeed results in NCC from annealing that permits the strain‐induced cold crystallization to take place on the length scale of the mesh size of the deformed chain network.  more » « less
Award ID(s):
2017845
PAR ID:
10368680
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
44
Issue:
1
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Purpose The purpose of this study is to understand how printing parameters and subsequent annealing impacts porosity and crystallinity of 3D printed polylactic acid (PLA) and how these structural characteristics impact the printed material’s tensile strength in various build directions. Design/methodology/approach Two experimental studies were used, and samples with a flat vs upright print orientation were compared. The first experiment investigates a scan of printing parameters and annealing times and temperatures above the cold crystallization temperature ( T cc ) for PLA. The second experiment investigates annealing above and below T cc at multiple points over 12 h. Findings Annealing above T cc does not significantly impact the porosity but it does increase crystallinity. The increase in crystallinity does not contribute to an increase in strength, suggesting that co-crystallization across the weld does not occur. Atomic force microscopy (AFM) images show that weld interfaces between printed fibers are still visible after annealing above T cc , confirming the lack of co-crystallization. Annealing below T cc does not significantly impact porosity or crystallinity. However, there is an increase in tensile strength. AFM images show that annealing below T cc reduces thermal stresses that form at the interfaces during printing and slightly “heals” the as-printed interface resulting in an increase in tensile strength. Originality/value While annealing has been explored in the literature, it is unclear how it affects porosity, crystallinity and thermal stresses in fused filament fabrication PLA and how those factors contribute to mechanical properties. This study explains how co-crystallization across weld interfaces is necessary for crystallinity to increase strength and uses AFM as a technique to observe morphology at the weld. 
    more » « less
  2. Chain orientation, a natural consequence of polymer film processing, often leads to enhanced mechanical properties parallel to the machine extrusion direction (MD), while leaving the properties in the transverse direction (TD) unaffected or diminished, as compared to the unoriented material. Here, we report that mixing poly(ethylene oxide)-block-poly(butylene oxide) (PEO-PBO) diblock copolymer that forms dispersed particles in an amorphous polylactide (PLA) matrix produces uniaxially stretched blend films with enhanced toughness in both the MD and TD. Small-angle X-ray scattering experiments and visual observations revealed that the dominant deformation mechanism for blend films transitions from crazing to shear yielding in the MD as the stretching ratio increases, while crazing is the primary deformation mechanism in the TD at all stretching ratios investigated. As the films age at room temperature, crazing becomes more prevalent in the MD without compromising the improved toughness. The stretched blend films were susceptible to some degree of mechanical aging in the TD but remained fivefold tougher than stretched neat PLA films for up to 150 days. This work presents a feasible route to produce uniaxially stretched PEO–PBO/PLA films that are mechanically tough, which provides a more sustainable plastic alternative. 
    more » « less
  3. ABSTRACT This study investigates the morphological, thermal, mechanical, and bioactive properties of centrifugally spun fibrous composites made from poly(D,L‐lactide)/poly(3‐hydroxybutyrate) (PLA/PHB) blends with zinc oxide (ZnO) and hydroxyapatite (Hap) nanoparticles. A 75/25 PLA/PHB weight ratio was chosen to balance mechanical and thermal properties. The precursor solution viscosities ranged from 0.25 to 0.50 Pa s, increasing with nanoparticle incorporation probably due to polymer‐nanoparticle interactions. SEM revealed a uniform fibrous morphology, with diameters of 1.21 for PLA/PHB, 2.65 for PLA/ZnO/Hap, and 1.80 μm for PLA/PHB/ZnO/Hap. TGA showed two‐step degradation for PLA/PHB fibers, while PLA/PHB/ZnO/Hap degraded in a single step at 249°C, leaving a residue of 9.95%. DSC indicated partial miscibility, with cold crystallization at 85°C (enthalpy: 7.72 J/g), slightly modified by nanoparticle addition. PLA/PHB fibers achieved a Young's modulus of 24.96 ± 3.91 MPa, three times that of pure PLA, but adding ZnO and Hap reduced modulus and tensile strength to 6.03 and 0.29 MPa, retaining suitability for biomedical applications. PLA/PHB/ZnO/Hap fibers exhibited 90%Escherichia coligrowth inhibition and enhanced MC3T3‐E1 cell viability by 120% on day 7. These results highlight their potential for antimicrobial, biocompatible medical devices. 
    more » « less
  4. Abstract The morphological stability of an organic photovoltaic (OPV) device is greatly affected by the dynamics of donors and acceptors occurring near the device's operational temperature. These dynamics can be quantified by the glass transition temperature (Tg) of conjugated polymers (CPs). Because flexible side chains possess much faster dynamics, the cleavage of the alkyl side chains will reduce chain dynamics, leading to a higherTg. In this work, theTgs for CPs are systematically studied with controlled side chain cleavage. Isothermal annealing of polythiophenes featuring thermally cleavable side chains at 140 °C, is found to remove more than 95% of alkyl side chains in 24 h, and raise the backboneTgfrom 23 to 75 °C. Coarse grain molecular dynamics simulations are used to understand theTgdependence on side chain cleavage. X‐ray scattering indicates that the relative degree of crystallization remains constantduring isothermal annealing process. The effective conjugation length is not influenced by thermal cleavage; however, the density of chromophore is doubled after the complete removal of alkyl side chains. The combined effect of enhancingTgand conserving crystalline structures during the thermal cleavage process can provide a pathway to improving the stability of optoelectronic properties in future OPV devices. 
    more » « less
  5. Polymer crystallization is a process which connects the initial amorphous state with the final semicrystalline state. It is important to elucidate the amorphous structure which determines the crystallization pathway. In this work, we report quantitative analysis of the spatial proximity of poly(Lactic acid) (PLA) racemate before and after stereocomplex (SC) crystallization by using 13C selective isotope labeling and two-dimensional solid-state (ss) NMR techniques. It is found that i) the PLA racemate forms SC structure prior to crystallization (chiral recognition), ii) fraction of the chiral recognition segments (f) is extremely high, 94% in a low molecular weight (M) racemate while a high M one possesses only f = 10%, and iii) the f value for the former and latter is surprisingly in accordance with the f value after SC crystallization and SC crystallinity, respectively. From the observed analogies between the initial glassy and final crystalline structures, it is concluded that pre-existing chiral recognition fraction governs the formations of SCC. 
    more » « less