skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced Mechanical Properties of Uniaxially Stretched Polylactide/Poly(ethylene oxide)-b-Poly(butylene oxide) Blend Films
Chain orientation, a natural consequence of polymer film processing, often leads to enhanced mechanical properties parallel to the machine extrusion direction (MD), while leaving the properties in the transverse direction (TD) unaffected or diminished, as compared to the unoriented material. Here, we report that mixing poly(ethylene oxide)-block-poly(butylene oxide) (PEO-PBO) diblock copolymer that forms dispersed particles in an amorphous polylactide (PLA) matrix produces uniaxially stretched blend films with enhanced toughness in both the MD and TD. Small-angle X-ray scattering experiments and visual observations revealed that the dominant deformation mechanism for blend films transitions from crazing to shear yielding in the MD as the stretching ratio increases, while crazing is the primary deformation mechanism in the TD at all stretching ratios investigated. As the films age at room temperature, crazing becomes more prevalent in the MD without compromising the improved toughness. The stretched blend films were susceptible to some degree of mechanical aging in the TD but remained fivefold tougher than stretched neat PLA films for up to 150 days. This work presents a feasible route to produce uniaxially stretched PEO–PBO/PLA films that are mechanically tough, which provides a more sustainable plastic alternative.  more » « less
Award ID(s):
1901635 2011401
PAR ID:
10379174
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACS Applied Polymer Materials
ISSN:
2637-6105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semicrystalline poly(l-lactide) (PLLA) is a leading biosourced, compostable alternative to conventional plastics but lacks sufficient toughness for many applications. Chain alignment via uniaxial stretching may be used to toughen PLLA but often creates anisotropic materials that are tough in the machine direction (MD) but brittle in the transverse direction (TD). This work reports uniaxially stretched films of PLLA blended with 3 wt % poly(ethylene oxide)-block-poly(butylene oxide) (PEO-PBO), which exhibit as much as a 5-fold increase in toughness in the TD compared to similarly stretched neat PLLA films─and elucidates the impact of PEO–PBO particles on the relationship between stretching, crystallization behavior, and resultant mechanical properties. Faster stretching rates were correlated with higher yield stress and a greater degree of crystallite alignment in the PEO–PBO/PLLA blends. This trend highlights the synergistic relationship between crystallinity and chain alignment and suggests a competing mechanism of heterogeneous crystallite nucleation around PEO–PBO particles. Importantly, PEO–PBO/PLLA exhibited a TD elongation at break of 36%, five times greater than the value of similarly stretched neat PLLA and even greater than the corresponding MD value of either material. Taken together, these findings demonstrate that uniaxial stretching of PEO–PBO/PLLA blends produces biaxially tough films, with the fastest stretching conditions producing the greatest enhancement in TD toughness. 
    more » « less
  2. The tunable properties of thermoplastic elastomers (TPEs), through polymer chemistry manipulations, enable these technologically critical materials to be employed in a broad range of applications. The need to “dial-in” the mechanical properties and responses of TPEs generally requires the design and synthesis of new macromolecules. In these designs, TPEs with nonlinear macromolecular architectures outperform the mechanical properties of their linear copolymer counterparts, but the differences in deformation mechanism providing enhanced performance are unknown. Here, in situ small-angle X-ray scattering (SAXS) measurements during uniaxial extension reveal distinct deformation mechanisms between a commercially available linear poly(styrene)-poly(butadiene)-poly(styrene) (SBS) triblock copolymer and the grafted SBS version containing grafted poly(styrene) (PS) chains from the poly(butadiene) (PBD) mid-block. The neat SBS (φSBS = 100%) sample deforms congruently with the macroscopic dimensions with the domain spacing between spheres increasing and decreasing along and traverse to the stretch direction, respectively. At high extensions, end segment pullout from the PS-rich domains is detected, which is indicated by a disordering of SBS. Conversely, the PS-grafted SBS that is 30 vol% SBS and 70% styrene (φSBS = 30%) exhibits a lamellar morphology and in situ SAXS measurements reveal an unexpected deformation mechanism. During deformation there are two simultaneous processes: significant lamellar domain rearrangement to preferentially orient the lamellae planes parallel to the stretch direction and crazing. The samples whiten at high strains as expected for crazing, which corresponds with the emergence of features in the two-dimensional SAXS pattern during stretching consistent with fibril-like structures that bridge the voids in crazes. The significant domain rearrangement in the grafted copolymers is attributed to the new junctions formed across multiple PS domains by the grafts of a single chain. The in situ SAXS measurements provide insights into the enhanced mechanical properties of grafted copolymers that arise through improved physical crosslinking that leads to nanostructured domain reorientation for self-reinforcement and craze formation where fibrils help to strengthen the polymer. 
    more » « less
  3. Abstract The processing–structure–property relationship using poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET) is explored. Specifically, both pre‐extension and preshear of amorphous PLA and PET above their glass transition temperaturesTg, carried out in the affine deformation limit, can induce a specific type of cold crystallization during annealing, i.e., nanoconfined crystallization (NCC) where crystal sizes are limited to a nanoscopic scale in all dimensions so as to render the processed PLA and PET optically transparent. The new polymer structure after premelt deformation can show considerably enhanced mechanical properties. For example, premelt stretching produces geometric condensation of the chain network. This structural alternation can profoundly change the mechanical characteristics, e.g., turning brittle PLA ductile. In contrast, after preshear of amorphous PLA aboveTg, the NCC containing PLA remains brittle, showing the importance to have geometric condensation from processing. Both AFM imaging and SAXS measurements are performed to verify that premelt deformation of PLA and PET indeed results in NCC from annealing that permits the strain‐induced cold crystallization to take place on the length scale of the mesh size of the deformed chain network. 
    more » « less
  4. ABSTRACT This study investigates the morphological, thermal, mechanical, and bioactive properties of centrifugally spun fibrous composites made from poly(D,L‐lactide)/poly(3‐hydroxybutyrate) (PLA/PHB) blends with zinc oxide (ZnO) and hydroxyapatite (Hap) nanoparticles. A 75/25 PLA/PHB weight ratio was chosen to balance mechanical and thermal properties. The precursor solution viscosities ranged from 0.25 to 0.50 Pa s, increasing with nanoparticle incorporation probably due to polymer‐nanoparticle interactions. SEM revealed a uniform fibrous morphology, with diameters of 1.21 for PLA/PHB, 2.65 for PLA/ZnO/Hap, and 1.80 μm for PLA/PHB/ZnO/Hap. TGA showed two‐step degradation for PLA/PHB fibers, while PLA/PHB/ZnO/Hap degraded in a single step at 249°C, leaving a residue of 9.95%. DSC indicated partial miscibility, with cold crystallization at 85°C (enthalpy: 7.72 J/g), slightly modified by nanoparticle addition. PLA/PHB fibers achieved a Young's modulus of 24.96 ± 3.91 MPa, three times that of pure PLA, but adding ZnO and Hap reduced modulus and tensile strength to 6.03 and 0.29 MPa, retaining suitability for biomedical applications. PLA/PHB/ZnO/Hap fibers exhibited 90%Escherichia coligrowth inhibition and enhanced MC3T3‐E1 cell viability by 120% on day 7. These results highlight their potential for antimicrobial, biocompatible medical devices. 
    more » « less
  5. We employ molecular dynamics (MD) simulations to investigate the mechanical behaviors of immiscible polymer interfaces enhanced by block copolymer compatibilizers. We show that the entanglement density at the interface, governed by the Flory–Huggins parameter χ, is critical for mechanical performance. Increasing immiscibility leads to sharper interfaces with reduced interfacial entanglements, resulting in easy chain pullout during tensile deformation and weaker interfacial strength. Adding block copolymer compatibilizers to the blends can switch the failure mechanism from interfacial chain pullout to bulk-phase crazing, substantially enhancing mechanical performance. Although long diblock and tetrablock copolymers only mildly increase the interfacial entanglement density, they can act as stress transmitters across the interface by entangling with chains in the bulk domains. Tetrablock copolymers are particularly effective for strengthening polymer blends by forming loops at the interface, making chain pullout topologically more difficult and promoting energy dissipation through crazing in the bulk regions. Our findings reveal the roles of both entanglement at interfaces and block copolymer architecture in the mechanical properties of immiscible polymer interfaces, which may guide the design of better compatibilizers for enhancing inhomogeneous polymer samples. 
    more » « less