skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrologic Export of Soil Organic Carbon: Continental Variation and Implications
Abstract Soil is the largest terrestrial carbon (C) reservoir and a large potential source or sink of atmospheric CO. Soil C models have usually focused on refining representations of microbe‐mediated C turnover, whereas lateral hydrologic C fluxes have largely been ignored at regional and global scales. Here, we provide large‐scale estimates of hydrologic export of soil organic carbon (SOC) and its effects on bulk soil C turnover rates. Hydrologic export of SOC ranged from nearly 0 to 12 g C m−2yr−1amongst catchments across the conterminous United States, and total export across this region was 14 (95% CI 4‐41) Tg C/yr. The proportion of soil C turnover attributed to hydrologic export ranged from <1% to 20%, and averaged 0.97% (weighted by catchment area; 95% CI 0.3%–2.6%), with the lowest values in arid catchments. Ignoring hydrologic export in C cycle models might lead to overestimation of SOC stocks by 0.3–2.6 Pg C for the conterminous United States. High uncertainty in hydrologic C export fluxes and potentially substantial effects on soil C turnover illustrate the need for research aimed at improving our mechanistic understanding of the processes regulating hydrologic C export.  more » « less
Award ID(s):
1754363
PAR ID:
10368769
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
36
Issue:
6
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil is the source of the vast majority of food consumed on Earth, and soils constitute the largest terrestrial carbon pool. Soil erosion associated with agriculture reduces crop productivity, and the redistribution of soil organic carbon (SOC) by erosion has potential to influence the global carbon cycle. Tillage strongly influences the erosion and redistribution of soil and SOC. However, tillage is rarely considered in predictions of soil erosion in the U.S.; hence regionwide estimates of both the current magnitude and future trends of soil redistribution by tillage are unknown. Here we use a landscape evolution model to forecast soil and SOC redistribution in the Midwestern United States over centennial timescales. We predict that present‐day rates of soil and SOC erosion are 1.1 ± 0.4 kg ⋅ m−‐2 ⋅ yr−‐1and 12 ± 4 g ⋅ m−2 ⋅ yr−1, respectively, but these rates will rapidly decelerate due to diffusive evolution of topography and the progressive depletion of SOC in eroding soil profiles. After 100 years, we forecast that 8.8 (+1.9/−2.1) Pg of soil and 0.17 (+0.03/−0.04) Pg of SOC will have eroded, causing the surface concentration of SOC to decrease by 4.4% (+0.9/−1.1%). Model simulations that include more widespread adoption of low‐intensity tillage (i.e., no‐till farming) determine that soil redistribution, SOC redistribution, and surficial SOC loss after 100 years would decrease by ∼95% if low‐intensity tillage is fully adopted. Our findings indicate that low‐intensity tillage could greatly decrease soil degradation and that the potential for agricultural soil erosion to influence the global carbon cycle will diminish with time due to a reduction in SOC burial. 
    more » « less
  2. Abstract Glacierized coastal catchments of the Gulf of Alaska (GoA) are undergoing rapid hydrologic fluctuations in response to climate change. These catchments deliver dissolved and suspended inorganic and organic matter to nearshore marine environments, however, these glacierized coastal catchments are relatively understudied and little is known about total solute and particulate fluxes to the ocean. We present hydrologic, physical, and geochemical data collected during April–October 2019–2021 from 10 streams along gradients of glacial fed to non‐glacial (i.e., precipitation) fed, in one Southcentral and one Southeast Alaska region. Hydrologic data reveal that glaciers drive the seasonal runoff patterns. The ẟ18O signature and specific conductance show distinctive seasonal variations in stream water sources between the study regions apparently due to the large amounts of rain in Southeast Alaska. Total dissolved solids concentrations and yields were elevated in the Southcentral region, due to lithologic influence on dissolved loads, however, the hydroclimate is the primary driver of the timing of dissolved and suspended yields. We show the yields of dissolved organic carbon is higher and that the δ13CPOCis enriched in the Southeast streams illustrating contrasts in organic carbon export across the GoA. Finally, we illustrate how future yields of solutes and sediments to the GoA may change as watersheds evolve from glacial influenced to precipitation dominated. This integrated analysis provides insights into how watershed characteristics beyond glacier coverage control properties of freshwater inputs to the GoA and the importance of expanding study regions to multiple hydroclimate regimes. 
    more » « less
  3. Michael Kaiser (Ed.)
    By influencing soil organic carbon (SOC), cover crops play a key role in shaping soil health and hence the system's long‐term sustainability. However, the magnitude by which cover crops impacts SOC depends on multiple factors, including soil type, climate, crop rotation, tillage type, cover crop growth, and years under management. To elucidate how these multiple factors influence the relative impact of cover crops on SOC, we conducted a meta‐analysis on the impacts of cover crops within rotations that included corn (Zea maysL.) on SOC accumulation. Information on climatic conditions, soil characteristics, management, and cover crop performance was extracted, resulting in 198 paired comparisons from 61 peer‐reviewed studies. Over the course of each study, cover crops on average increased SOC by 7.3% (95% CI, 4.9%–9.6%). Furthermore, the impact of cover crop–induced increases in percent change SOC was evaluated across soil textures, cover crop types, crop rotations, biomass amounts, cover crop durations, tillage practices, and climatic zones. Our results suggest that current cover crop–based corn production systems are sequestering 5.5 million Mg of SOC per year in the United States and have the potential to sequester 175 million Mg SOC per year globally. These findings can be used to improve carbon footprint calculations and develop science‐based policy recommendations. Taken altogether, cover cropping is a promising strategy to sequester atmospheric C and hence make corn production systems more resilient to changing climates. 
    more » « less
  4. Abstract The magnitude of future emissions of greenhouse gases from the northern permafrost region depends crucially on the mineralization of soil organic carbon (SOC) that has accumulated over millennia in these perennially frozen soils. Many recent studies have used radiocarbon (14C) to quantify the release of this “old” SOC as CO2or CH4to the atmosphere or as dissolved and particulate organic carbon (DOC and POC) to surface waters. We compiled ~1,90014C measurements from 51 sites in the northern permafrost region to assess the vulnerability of thawing SOC in tundra, forest, peatland, lake, and river ecosystems. We found that growing season soil14C‐CO2emissions generally had a modern (post‐1950s) signature, but that well‐drained, oxic soils had increased CO2emissions derived from older sources following recent thaw. The age of CO2and CH4emitted from lakes depended primarily on the age and quantity of SOC in sediments and on the mode of emission, and indicated substantial losses of previously frozen SOC from actively expanding thermokarst lakes. Increased fluvial export of aged DOC and POC occurred from sites where permafrost thaw caused soil thermal erosion. There was limited evidence supporting release of previously frozen SOC as CO2, CH4, and DOC from thawing peatlands with anoxic soils. This synthesis thus suggests widespread but not universal release of permafrost SOC following thaw. We show that different definitions of “old” sources among studies hamper the comparison of vulnerability of permafrost SOC across ecosystems and disturbances. We also highlight opportunities for future14C studies in the permafrost region. 
    more » « less
  5. Abstract Efforts to reduce nitrogen and carbon loading from developed watersheds typically target specific flows or sources, but across gradients in development intensity there is no consensus on the contribution of different flows to total loading or sources of nitrogen export. This information is vital to optimize management strategies leveraging source reductions, stormwater controls, and restorations. We investigate how solute loading and sources vary across flows and land‐use using high frequency monitoring and stable nitrate isotope analysis from five catchments with different sanitary infrastructure, along a gradient in development intensity. High frequency monitoring allowed estimation of annual loading and attribution to storm versus baseflows. Nitrate loads were 16 kg/km2/yr. from the forested catchment and ranged from 68 to 119 kg/km2/yr., across developed catchments, highest for the septic served site. Across developed catchments, baseflow contributions ranged from 40% of N loading to 75% from the septic served catchment, and the contribution from high stormflows increased with development intensity. Stormflows mobilized and mixed many surface and subsurface nitrate sources while baseflow nitrate was dominated by fewer sources which varied by catchment (soil, wastewater, or fertilizer). To help inform future sampling designs, we demonstrate that grab sampling and targeted storm sampling would likely fail to accurately predict annual loadings within the study period. The dominant baseflow loads and subsurface stormflows are not treated by surface water management practices primarily targeted to surface stormflows. Using a balance of green and gray infrastructure and stream/riparian restoration may target specific flow paths and improve management. 
    more » « less