skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A global meta‐analysis of cover crop response on soil carbon storage within a corn production system
By influencing soil organic carbon (SOC), cover crops play a key role in shaping soil health and hence the system's long‐term sustainability. However, the magnitude by which cover crops impacts SOC depends on multiple factors, including soil type, climate, crop rotation, tillage type, cover crop growth, and years under management. To elucidate how these multiple factors influence the relative impact of cover crops on SOC, we conducted a meta‐analysis on the impacts of cover crops within rotations that included corn (Zea maysL.) on SOC accumulation. Information on climatic conditions, soil characteristics, management, and cover crop performance was extracted, resulting in 198 paired comparisons from 61 peer‐reviewed studies. Over the course of each study, cover crops on average increased SOC by 7.3% (95% CI, 4.9%–9.6%). Furthermore, the impact of cover crop–induced increases in percent change SOC was evaluated across soil textures, cover crop types, crop rotations, biomass amounts, cover crop durations, tillage practices, and climatic zones. Our results suggest that current cover crop–based corn production systems are sequestering 5.5 million Mg of SOC per year in the United States and have the potential to sequester 175 million Mg SOC per year globally. These findings can be used to improve carbon footprint calculations and develop science‐based policy recommendations. Taken altogether, cover cropping is a promising strategy to sequester atmospheric C and hence make corn production systems more resilient to changing climates.  more » « less
Award ID(s):
2119753
PAR ID:
10479209
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Michael Kaiser
Publisher / Repository:
Agronomy Journal
Date Published:
Journal Name:
Agronomy Journal
Volume:
115
Issue:
4
ISSN:
0002-1962
Page Range / eLocation ID:
1543 to 1556
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cover crops, a promising strategy to increase soil organic carbon (SOC) storage in croplands and mitigate climate change, have typically been shown to benefit soil carbon (C) storage from increased plant C inputs. However, input‐driven C benefits may be augmented by the reduction of C outputs induced by cover crops, a process that has been tested by individual studies but has not yet been synthesized. Here we quantified the impact of cover crops on organic C loss via soil erosion (SOC erosion) and revealed the geographical variability at the global scale. We analyzed the field data from 152 paired control and cover crop treatments from 57 published studies worldwide using meta‐analysis and machine learning. The meta‐analysis results showed that cover crops widely reduced SOC erosion by an average of 68% on an annual basis, while they increased SOC stock by 14% (0–15 cm). The absolute SOC erosion reduction ranged from 0 to 18.0 Mg C−1 ha−1 year−1and showed no correlation with the SOC stock change that varied from −8.07 to 22.6 Mg C−1 ha−1 year−1at 0–15 cm depth, indicating the latter more likely related to plant C inputs. The magnitude of SOC erosion reduction was dominantly determined by topographic slope. The global map generated by machine learning showed the relative effectiveness of SOC erosion reduction mainly occurred in temperate regions, including central Europe, central‐east China, and Southern South America. Our results highlight that cover crop‐induced erosion reduction can augment SOC stock to provide additive C benefits, especially in sloping and temperate croplands, for mitigating climate change. 
    more » « less
  2. Abstract The adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and tillage practices based on the farm’s pedoclimatic and topographic characteristics. Hence, the primary objective of this study was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study region. Our analysis revealed that 4% of the corn (Zea mays) and soybean (Glycine max) fields in eastern SD had a cover crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The methods developed through this research may provide a viable means for tracking and documenting farmers’ agricultural management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution that could help used to monitor various climate-smart agricultural practices. 
    more » « less
  3. The study evaluates land use impacts of corn stover markets for the state of Iowa. To tie land use decisions to their economic basis, we use an economic model to simulate profit-maximizing choices of crop-tillage rotations and stover collection, and evaluate the impacts of the stover collection restrictions imposed on the land of lower productivity, as defined by the land with Corn Suitability Rating below 80. We find that stover collection is likely to lead to substantial shifts in rotations favoring continuous corn at stover prices above $50/ton. This crop rotation shift is accompanied by the changes in tillage rotations favoring both continuous conventional tillage and, to a lesser extent, continuous conservation tillage. The crop-rotation impacts of stover markets differ substantially between the restricted and unrestricted stover markets. This finding illustrates the importance of differentiating among the cropland of alternative soil quality when assessing the impacts of corn stover markets. 
    more » « less
  4. null (Ed.)
    Climate change will ultimately result in higher surface temperature and more variable precipitation, negatively affecting agricultural productivity. To sustain the agricultural production in the face of climate change, adaptive agricultural management or best management practices (BMPs) are needed. The currently practiced BMPs include crop rotation, early planting, conservation tillage, cover crops, effective fertilizer use, and so on. This research investigated the agricultural production of BMPs in response to climate change for a Hydrologic Unit Code12 sub-watershed of Choctawhatchee Watershed in Alabama, USA. The dominating soil type of this region was sandy loam and loamy sand soil. Agricultural Production Systems sIMulator and Cropping Systems Simulation Model were used to estimate the agricultural production. Representative Concentration Pathway (RCP) 4.5 and RCP8.5 that projected a temperature increase of 2.3℃ and 4.7℃ were used as climate scenarios. The research demonstrated that crop rotation had positive response to climate change. With peanuts in the rotation, a production increase of 105% was observed for cotton. There was no consistent impact on crop yields by early planting. With selected peanut-cotton rotations, 50% reduced nitrogen fertilizer use was observed to achieve comparable crop yields. In response to climate change, crop rotation with legume incorporation is thus suggested, which increased crop production and reduced fertilizer use. 
    more » « less
  5. Abstract Climate change adaptation requires building agricultural system resilience to warmer, drier climates. Increasing temporal plant diversity through crop rotation diversification increases yields of some crops under drought, but its potential to enhance crop drought resistance and the underlying mechanisms remain unclear. We conducted a drought manipulation experiment using rainout shelters embedded within a 36-year crop rotation diversity and no-till experiment in a temperate climate and measured a suite of soil and crop developmental and eco-physiological traits in the field and laboratory. We show that diversifying maize-soybean rotations with small grain cereals and cover crops mitigated maize water stress at the leaf and canopy scales and reduced yield losses to drought by 17.1 ± 6.1%, while no-till did not affect maize drought resistance. Path analysis showed a strong correlation between soil organic matter and lower maize water stress despite no significant differences in soil organic matter between rotations or tillage treatments. This positive relationship between soil organic matter and maize water status was not mediated by higher soil water retention or infiltration as often hypothesized, nor differential depth of root water uptake as measured with stable isotopes, suggesting that other mechanisms are at play. Crop rotation diversification is an underappreciated drought management tool to adapt crop production to climate change through managing for soil organic matter. 
    more » « less