Activated Gαq signals through phospholipase-Cβ and Trio, a Rho GTPase exchange factor (RhoGEF), but how these distinct effector pathways promote cellular responses to neurotransmitters like serotonin remains poorly understood. We used the egg-laying behavior circuit of Caenorhabditis elegans to determine whether phospholipase-Cβ and Trio mediate serotonin and Gαq signaling through independent or related biochemical pathways. Our genetic rescue experiments suggest that phospholipase-Cβ functions in neurons while Trio Rho GTPase exchange factor functions in both neurons and the postsynaptic vulval muscles. While Gαq, phospholipase-Cβ, and Trio Rho GTPase exchange factor mutants fail to lay eggs in response to serotonin, optogenetic stimulation of the serotonin-releasing HSN neurons restores egg laying only in phospholipase-Cβ mutants. Phospholipase-Cβ mutants showed vulval muscle Ca2+ transients while strong Gαq and Trio Rho GTPase exchange factor mutants had little or no vulval muscle Ca2+ activity. Treatment with phorbol 12-myristate 13-acetate that mimics 1,2-diacylglycerol, a product of PIP2 hydrolysis, rescued egg-laying circuit activity and behavior defects of Gαq signaling mutants, suggesting both phospholipase-C and Rho signaling promote synaptic transmission and egg laying via modulation of 1,2-diacylglycerol levels. 1,2-Diacylglycerol activates effectors including UNC-13; however, we find that phorbol esters, but not serotonin, stimulate egg laying in unc-13 and phospholipase-Cβ more »
- Award ID(s):
- 1844657
- Publication Date:
- NSF-PAR ID:
- 10368775
- Journal Name:
- Genetics
- Volume:
- 221
- Issue:
- 3
- ISSN:
- 1943-2631
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Bülow, H (Ed.)Abstract Egg laying in the nematode worm Caenorhabditis elegans is a two-state behavior modulated by internal and external sensory input. We have previously shown that homeostatic feedback of embryo accumulation in the uterus regulates bursting activity of the serotonergic HSN command neurons that sustains the egg-laying active state. How sensory feedback of egg release signals to terminate the egg-laying active state is less understood. We find that Gαo, a conserved Pertussis Toxin-sensitive G protein, signals within HSN to inhibit egg-laying circuit activity and prevent entry into the active state. Gαo signaling hyperpolarizes HSN, reducing HSN Ca2+ activity and input onto the postsynaptic vulval muscles. Loss of inhibitory Gαo signaling uncouples presynaptic HSN activity from a postsynaptic, stretch-dependent homeostat, causing precocious entry into the egg-laying active state when only a few eggs are present in the uterus. Feedback of vulval opening and egg release activates the uv1 neuroendocrine cells which release NLP-7 neuropeptides which signal to inhibit egg laying through Gαo-independent mechanisms in the HSNs and Gαo-dependent mechanisms in cells other than the HSNs. Thus, neuropeptide and inhibitory Gαo signaling maintain a bi-stable state of electrical excitability that dynamically controls circuit activity in response to both external and internal sensory inputmore »
-
Mutations in the GTPase enzyme K-Ras, specifically at codon G12, remain the most common genetic alterations in human cancers. The mechanisms governing activation of downstream signaling pathways and how they relate back to the identity of the mutation have yet to be completely defined. Here we use native mass spectrometry (MS) combined with ultraviolet photodissociation (UVPD) to investigate the impact of three G12X mutations (G12C, G12V, G12S) on the homodimerization of K-Ras as well as heterodimerization with a downstream effector protein, Raf. Electrospray ionization (ESI) was used to transfer complexes of WT or G12X K-Ras bound to guanosine 5′-diphosphate (GDP) or GppNHp (non-hydrolyzable analogue of GTP) into the gas phase. Relative abundances of homo- or hetero-dimer complexes were estimated from ESI-MS spectra. K-Ras + Raf heterocomplexes were activated with UVPD to probe structural changes responsible for observed differences in the amount of heterocomplex formed for each variant. Holo (ligand-bound) fragment ions resulting from photodissociation suggest the G12X mutants bind Raf along the expected effector binding region (β-interface) but may interact with Raf via an alternative α-interface as well. Variations in backbone cleavage efficiencies during UV photoactivation of each variant were used to relate mutation identity to structural changes that mightmore »
-
ABSTRACT Targeting fibroblast growth factor 23 (FGF-23) signaling pathway is of interest in controlling body phosphate metabolism. This study investigated the effect of anti-fibroblast growth factor receptor 1 (FGFR1, major FGF-23 receptor in the kidney) antibodies on phosphate metabolism. White Leghorn laying hens (65-wk-old) were vaccinated with either a FGFR1 peptide vaccine (five 8-amino-acid peptides were selected, CrZ-1:LPEDPRWE, CrZ-2:LDKDKPNR, CrZ-3:RRPPGMEY, CrZ-4:GSPYPGVP, and CrZ-5:RMDKPSNC) or adjuvant control. At peak antibody titer, hens were artificially inseminated. Chicks from control-vaccinated hens were fed either a non-phytate phosphorus (nPP) sufficient (nPP = 0.45%, positive control) or deficient (nPP = 0.20%, negative control) diet, while chicks from each of the FGFR1 peptide vaccinated hens were fed with the above nPP-deficient diet, for 14 D. When compared to control hens, plasma phosphate in CrZ-1, CrZ-2, CrZ-3, CrZ-4, and CrZ-5 vaccinated hens were decreased by 33, 30, 24, 20, and 26%, respectively (P < 0.05); egg weight in CrZ-2 and CrZ-5 vaccinated hens were increased by 6 and 7%, respectively (P < 0.05); egg production in CrZ-3, CrZ-4, and CrZ-5 vaccinated hens tended to decrease (P = 0.085; decreased by 14, 15, and 13%, respectively). When compared to positive control, chicks from all other groups had decreased bodymore »
-
Introduction— In response to external stress, cells alter their morphology, metabolic activity, and functions to mechanically adapt to the dynamic, local environment through cell allostasis. To explore mechanotransduction in cellular allostasis, we applied an integrated micromechanical system that combines an ‘ultrasound tweezers’-based mechanical stressor and a Förster resonance energy transfer (FRET)-based molecular force biosensor, termed “actinin-sstFRET,” to monitor in situ single-cell allostasis in response to transient stimulation in real time. Methods— The ultrasound tweezers utilize 1 Hz, 10-second transient ultrasound pulses to acoustically excite a lipid-encapsulated microbubble, which is bound to the cell membrane, and apply a pico- to nano-Newton range of forces to cells through an RGD-integrin linkage. The actinin-sstFRET molecular sensor, which engages the actin stress fibers in live cells, is used to map real-time actomyosin force dynamics over time. Then, the mechanosensitive behaviors were examined by profiling the dynamics in Ca2+ influx, actomyosin cytoskeleton (CSK) activity, and GTPase RhoA signaling to define a single-cell mechanical allostasis. Results—By subjecting a 1 Hz, 10-second physical stress, single vascular smooth muscle cells (VSMCs) were observed to remodeled themselves in a biphasic mechanical allostatic manner within 30 minutes that caused them to adjust their contractility and actomyosin activities. The cellular machinerymore »
-
The serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state. This convergence of information supports serotonin’s capacity for contextualizing sensory information according to the animal’s physiological state and external events. At the level of sensory circuitry, serotonin can have variable effects due to differential projections across specific sensory subregions, as well as differential serotonin receptor type expression within those subregions. Functionally, this infrastructure may gate or filter sensory inputs to emphasize specific stimulus features or select among different streams of information. The near-ubiquitous presence of serotonin and other neuromodulators within sensory regions, coupled with their strong effects on stimulus representation, suggests that these signaling pathways should be considered integral components of sensory systems.