Summary We propose and analyze an efficient ensemble algorithm with artificial compressibility (AC) for fast decoupled computation of multiple realizations of the stochastic Stokes‐Darcy model with random hydraulic conductivity (including the one in the interface conditions), source terms, and initial conditions. The solutions are found by solving three smaller decoupled subproblems with two common time‐independent coefficient matrices for all realizations, which significantly improves the efficiency for both assembling and solving the matrix systems. The fully coupled Stokes‐Darcy system can be first decoupled into two smaller subphysics problems by the idea of the partitioned time stepping, which reduces the size of the linear systems and allows parallel computing for each subphysics problem. The AC further decouples the velocity and pressure which further reduces storage requirements and improves computational efficiency. We prove the long time stability and the convergence for this new ensemble method. Three numerical examples are presented to support the theoretical results and illustrate the features of the algorithm, including the convergence, stability, efficiency, and applicability.
more »
« less
Numerical analysis of a second order ensemble method for evolutionary magnetohydrodynamics equations at small magnetic Reynolds number
Abstract We study a second order ensemble method for fast computation of an ensemble of magnetohydrodynamics flows at small magnetic Reynolds number. Computing an ensemble of flow equations with different input parameters is a common procedure for uncertainty quantification in many engineering applications, for which the computational cost can be prohibitively expensive for nonlinear complex systems. We propose an ensemble algorithm that requires only solving one linear system with multiple right‐hands instead of solving multiple different linear systems, which significantly reduces the computational cost and simulation time. Comprehensive stability and error analyses are presented proving conditional stability and second order in time convergent. Numerical tests are provided to illustrate theoretical results and demonstrate the efficiency of the proposed algorithm.
more »
« less
- PAR ID:
- 10368818
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Numerical Methods for Partial Differential Equations
- Volume:
- 38
- Issue:
- 5
- ISSN:
- 0749-159X
- Page Range / eLocation ID:
- p. 1407-1436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Studying the propagation of uncertainties in a nonlinear dynamical system usually involves generating a set of samples in the stochastic parameter space and then repeated simulations with different sampled parameters. The main difficulty faced in the process is the excessive computational cost. In this paper, we present an efficient, partitioned ensemble algorithm to determine multiple realizations of a reduced Magnetohydrodynamics (MHD) system, which models MHD flows at low magnetic Reynolds number. The algorithm decouples the fully coupled problem into two smaller subphysics problems, which reduces the size of the linear systems that to be solved and allows the use of optimized codes for each subphysics problem. Moreover, the resulting coefficient matrices are the same for all realizations at each time step, which allows faster computation of all realizations and significant savings in computational cost. We prove this algorithm is first order accurate and long time stable under a time step condition. Numerical examples are provided to verify the theoretical results and demonstrate the efficiency of the algorithm.more » « less
-
Abstract We consider settings for which one needs to perform multiple flow simulations based on the Navier–Stokes equations, each having different initial condition data, boundary condition data, forcing functions, and/or coefficients such as the viscosity. For such settings, we propose a second-order time accurate ensemble-based method that to simulate the whole set of solutions, requires, at each time step, the solution of only a single linear system with multiple right-hand-side vectors. Rigorous analyses are given proving the conditional stability and establishing error estimates for the proposed algorithm. Numerical experiments are provided that illustrate the analyses.more » « less
-
Implicit-explicit (IMEX) time integration schemes are well suited for non-linear structural dynamics because of their low computational cost and high accuracy. However, the stability of IMEX schemes cannot be guaranteed for general non-linear problems. In this article, we present a scalar auxiliary variable (SAV) stabilization of high-order IMEX time integration schemes that leads to unconditional stability. The proposed IMEX-BDFk-SAV schemes treat linear terms implicitly using kth-order backward difference formulas (BDFk) and non-linear terms explicitly. This eliminates the need for iterations in non-linear problems and leads to low computational costs. Truncation error analysis of the proposed IMEX-BDFk-SAV schemes confirms that up to kth-order accuracy can be achieved and this is verified through a series of convergence tests. Unlike existing SAV schemes for first-order ordinary differential equations (ODEs), we introduce a novel SAV for the proposed schemes that allows direct solution of the second-order ODEs without transforming them into a system of first-order ODEs. Finally, we demonstrate the performance of the proposed schemes by solving several non-linear problems in structural dynamics and show that the proposed schemes can achieve high accuracy at a low computational cost while maintaining unconditional stability.more » « less
-
Abstract Many applications of computational fluid dynamics require multiple simulations of a flow under different input conditions. In this paper, a numerical algorithm is developed to efficiently determine a set of such simulations in which the individually independent members of the set are subject to different viscosity coefficients, initial conditions and/or body forces. The proposed scheme, when applied to the flow ensemble, needs to solve a single linear system with multiple right-hand sides, and thus is computationally more efficient than solving for all the simulations separately. We show that the scheme is nonlinearly and long-term stable under certain conditions on the time-step size and a parameter deviation ratio. A rigorous numerical error estimate shows the scheme is of first-order accuracy in time and optimally accurate in space. Several numerical experiments are presented to illustrate the theoretical results.more » « less