skip to main content


Title: Documenting professional learning focused on implementing high-quality instructional materials in mathematics: the AIM–TRU learning cycle
Abstract Background

To increase teachers’ capacity to implement high-quality instructional materials with fidelity in their classrooms through a video-based professional learning cycle, the Analyzing Instruction in Mathematics Using the Teaching for Robust Understanding framework (AIM–TRU) research–practice partnership was formed. Drawing upon the design-based research paradigm, AIM–TRU created the initial design for the professional learning cycle and wanted to engage in continued iterative redesign as the year progressed. This necessitated a method, common among those who adjust their designs when applying them in context, by which to document and justify changes made over time to our model. The research contained in this article used qualitative methods to articulate and test the design underlying our professional learning cycle by advancing conjecture mapping, a device by which the embodiments of the design are made transparent to be analyzed in practice.

Results

The initial design conjectures and activity structures teachers engaged in through our model of professional learning were refined to address three themes that emerged. Firstly, it was found that the ways participants engaged with the mathematics of the lesson were underwhelming, in large part, because our own definition of what rich talk around mathematics should entail was lacking in details such as the mathematical objects in the lesson, the presence of multiple solution pathways, or the various representations that students could use. Second, talk structures did not always allow for equitable exchanges among all teachers. Finally, activity structures did not encourage teachers to delve deeply into the mathematics so they could perceive the lesson as a coherent piece of their own classroom curriculum. Our design conjectures and activity structures were revised over the course of the year.

Conclusions

Our use of conjecture mapping allowed us to address the concern with research–practice partnerships that they should develop and utilize tools that make the systemic inquiry they engage in transparent, allowing for other researchers, practitioners, and stakeholders to see the complete design process and make use of the findings for their local context. Implications for this process as a tool for those who pilot and scale professional development are raised and addressed.

 
more » « less
Award ID(s):
1908319
NSF-PAR ID:
10368822
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
9
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Small-group discussions are well established as an effective pedagogical tool to promote student learning in STEM classrooms. However, there are a variety of factors that influence how and to what extent K-12 teachers use small-group discussions in their classrooms, including both their own STEM content knowledge and their perceived ability to facilitate discussions. We designed the present study to specifically target these two factors in the context of photovoltaics, an interdisciplinary field at the intersection of all STEM disciplines with potential to yield widespread benefits related to the use of solar technologies as a sustainable, renewable energy source. Teachers engaged in a series of small-group discussions based on photovoltaic source material (e.g., scientific articles) to build both their STEM content knowledge and capability with discussions, promoting their potential to design and deliver STEM instruction in their own classrooms using small-group discussion.

    Results

    Overall, teachers productively engaged in rich STEM talk as they spent most of the time in the discussion asking authentic questions about photovoltaic topics in alignment with a variety of science and engineering disciplinary core ideas, responding to the questions with rich, elaborative talk, and taking on ownership of the discussions. Teachers also evidenced increases in their photovoltaic knowledge and their perceived capability to facilitate discussions. Finally, most teachers’ end-of-program lesson plans included the use of small-group discussions, and a subsample of teachers who completed a follow-up interview one year after the summer program reported greater enactment of discussion in their STEM classrooms.

    Conclusion

    Our manuscript forwards an important contribution that draws from a practice-based approach to professional development in a way that not only better prepares teachers on what to teach (i.e., through enhanced PV content knowledge), but it also supports their ability to implement this instruction into their classrooms more effectively (i.e., though the use of small-group discussion). As such, this manuscript illustrates an innovative pedagogical approach for potential use in supporting teacher education and informs ways to enable teachers to build enhanced curricula for their STEM students.

     
    more » « less
  2. Abstract Background

    Computational approaches in STEM foster creative extrapolations of ideas that extend the bounds of human perception, processing, and sense-making. Inviting teachers to explore computational approaches in STEM presents opportunities to examine shifting relationships to inquiry that support transdisciplinary learning in their classrooms. Similarly, play has long been acknowledged as activity that supports learners in taking risks, exploring the boundaries and configurations of existing structures, and imagining new possibilities. Yet, play is often overlooked as a crucial element of STEM learning, particularly for adolescents and adults. In this paper, we explorecomputational playas an activity that supports teachers’ transdisciplinary STEM learning. We build from an expansive notion of computational activity that involves jointly co-constructing and co-exploring rule-based systems in conversation with materials, collaborators, and communities to work towards jointly defined goals. We situate computation within STEM-rich making as a playful context for engaging in authentic, creative inquiry. Our research asksWhat are the characteristics of play and computation within computational play? And, in what ways does computational play contribute to teachers’ transdisciplinary learning?

    Results

    Teachers from grades 3–12 participated in a professional learning program that centered playful explorations of materials and tools using computational approaches: making objects based on rules that produce emergent behaviors and iterating on those rules to observe the effects on how the materials behaved. Using a case study and descriptions of the characteristics of computational play, our results show how familiarity of materials and the context of play encouraged teachers to engage in transdisciplinary inquiry, to ask questions about how materials behave, and to renegotiate their own relationships to disciplinary learning as they reflected on their work.

    Conclusions

    We argue computational play is a space of wonderment where iterative conversations with materials create opportunities for learners to author forms of transdisciplinary learning. Our results show how teachers and students can learn together in computational play, and we conclude this work can contribute to ongoing efforts in the design of professional and transdisciplinary learning environments focused on the intersections of materiality, play, and computation.

     
    more » « less
  3. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  4. Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice professional development (PD) model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al, 2017; Roth et al, 2018). The face-to-face PD model is expensive and difficult to scale. In this paper, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and effective science teaching practices in the context in which they will be teaching. There are scaffolded opportunities for teachers to learn from analysis of model videos by experienced teachers, to try teaching model units, to analyze video of their own teaching efforts, and ultimately to develop their own unit, with guidance. The PD model attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Authors, 2019. Methods We followed a design-based research approach (DBR; Cobb et al., 2003; Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005) in phase one of the project before studying its effect. Data Three small pilot groups of teachers engaged in both synchronous and asynchronous components of the larger online course which began implementation with a 10-week summer course that leads into study groups of participants meeting through one academic year. We iteratively designed, tested, and revised 17 modules across three pilot versions. On average, pilot groups completed one module every two weeks. Pilot 1 began the work in May 2019; Pilot 2 began in August 2019, and Pilot 3 began in October 2019. Pilot teachers responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. We revised all modules between each pilot group and used what we learned to inform our development of later modules within each pilot. For example, we applied what we learned from testing Module 3 with Pilot 1 to the development of Module 3 for Pilots 2, and also applied what we learned from Module 3 with Pilot 1 to the development of Module 7 for Pilot 1. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. We called them crux questions because they revealed teachers’ uncertainty and deepened learning during the discussion. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of covid-19, online PD has taken on new urgency. NARST members will gain insight into the translation of an effective face-to-face PD model to an online environment. 
    more » « less
  5. Abstract  
    more » « less