skip to main content


Title: Differential expression of single‐cell RNA‐seq data using Tweedie models
Abstract

The performance of computational methods and software to identify differentially expressed features in single‐cell RNA‐sequencing (scRNA‐seq) has been shown to be influenced by several factors, including the choice of the normalization method used and the choice of the experimental platform (or library preparation protocol) to profile gene expression in individual cells. Currently, it is up to the practitioner to choose the most appropriate differential expression (DE) method out of over 100 DE tools available to date, each relying on their own assumptions to model scRNA‐seq expression features. To model the technological variability in cross‐platform scRNA‐seq data, here we propose to use Tweedie generalized linear models that can flexibly capture a large dynamic range of observed scRNA‐seq expression profiles across experimental platforms induced by platform‐ and gene‐specific statistical properties such as heavy tails, sparsity, and gene expression distributions. We also propose a zero‐inflated Tweedie model that allows zero probability mass to exceed a traditional Tweedie distribution to model zero‐inflated scRNA‐seq data with excessive zero counts. Using both synthetic and published plate‐ and droplet‐based scRNA‐seq datasets, we perform a systematic benchmark evaluation of more than 10 representative DE methods and demonstrate that our method (Tweedieverse) outperforms the state‐of‐the‐art DE approaches across experimental platforms in terms of statistical power and false discovery rate control. Our open‐source software (R/Bioconductor package) is available athttps://github.com/himelmallick/Tweedieverse.

 
more » « less
Award ID(s):
2028280 2109688
PAR ID:
10368851
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Statistics in Medicine
Volume:
41
Issue:
18
ISSN:
0277-6715
Format(s):
Medium: X Size: p. 3492-3510
Size(s):
p. 3492-3510
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Single-cell RNA sequencing (scRNA-seq) has revolutionized biological sciences by revealing genome-wide gene expression levels within individual cells. However, a critical challenge faced by researchers is how to optimize the choices of sequencing platforms, sequencing depths and cell numbers in designing scRNA-seq experiments, so as to balance the exploration of the depth and breadth of transcriptome information.

    Results

    Here we present a flexible and robust simulator, scDesign, the first statistical framework for researchers to quantitatively assess practical scRNA-seq experimental design in the context of differential gene expression analysis. In addition to experimental design, scDesign also assists computational method development by generating high-quality synthetic scRNA-seq datasets under customized experimental settings. In an evaluation based on 17 cell types and 6 different protocols, scDesign outperformed four state-of-the-art scRNA-seq simulation methods and led to rational experimental design. In addition, scDesign demonstrates reproducibility across biological replicates and independent studies. We also discuss the performance of multiple differential expression and dimension reduction methods based on the protocol-dependent scRNA-seq data generated by scDesign. scDesign is expected to be an effective bioinformatic tool that assists rational scRNA-seq experimental design and comparison of scRNA–seq computational methods based on specific research goals.

    Availability and implementation

    We have implemented our method in the R package scDesign, which is freely available at https://github.com/Vivianstats/scDesign.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Single-cell RNA sequencing (scRNA-seq) data often contain doublets, where a doublet manifests as 1 cell barcode that corresponds to combined gene expression of two or more cells. Existence of doublets can lead to spurious biological interpretations. Here, we present s ingle- c ell MO del-driven D oublet D etection ( scMODD ), a model-driven algorithm to detect doublets in scRNA-seq data. ScMODD achieved similar performance compared to existing doublet detection algorithms which are primarily data-driven, showing the promise of model-driven approach for doublet detection. When implementing scMODD in simulated and real scRNA-seq data, we tested both the negative binomial (NB) model and the zero-inflated negative binomial (ZINB) model to serve as the underlying statistical model for scRNA-seq count data, and observed that incorporating zero inflation did not improve detection performance, suggesting that consideration of zero inflation is not necessary in the context of doublet detection in scRNA-seq. 
    more » « less
  3. null (Ed.)
    Abstract Background Single-cell RNA sequencing (scRNA-seq) is a powerful profiling technique at the single-cell resolution. Appropriate analysis of scRNA-seq data can characterize molecular heterogeneity and shed light into the underlying cellular process to better understand development and disease mechanisms. The unique analytic challenge is to appropriately model highly over-dispersed scRNA-seq count data with prevalent dropouts (zero counts), making zero-inflated dimensionality reduction techniques popular for scRNA-seq data analyses. Employing zero-inflated distributions, however, may place extra emphasis on zero counts, leading to potential bias when identifying the latent structure of the data. Results In this paper, we propose a fully generative hierarchical gamma-negative binomial (hGNB) model of scRNA-seq data, obviating the need for explicitly modeling zero inflation. At the same time, hGNB can naturally account for covariate effects at both the gene and cell levels to identify complex latent representations of scRNA-seq data, without the need for commonly adopted pre-processing steps such as normalization. Efficient Bayesian model inference is derived by exploiting conditional conjugacy via novel data augmentation techniques. Conclusion Experimental results on both simulated data and several real-world scRNA-seq datasets suggest that hGNB is a powerful tool for cell cluster discovery as well as cell lineage inference. 
    more » « less
  4. Abstract Background

    Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.

    Results

    We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.

    Conclusions

    iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.

     
    more » « less
  5. Abstract Motivation

    The biclustering of large-scale gene expression data holds promising potential for detecting condition-specific functional gene modules (i.e. biclusters). However, existing methods do not adequately address a comprehensive detection of all significant bicluster structures and have limited power when applied to expression data generated by RNA-Sequencing (RNA-Seq), especially single-cell RNA-Seq (scRNA-Seq) data, where massive zero and low expression values are observed.

    Results

    We present a new biclustering algorithm, QUalitative BIClustering algorithm Version 2 (QUBIC2), which is empowered by: (i) a novel left-truncated mixture of Gaussian model for an accurate assessment of multimodality in zero-enriched expression data, (ii) a fast and efficient dropouts-saving expansion strategy for functional gene modules optimization using information divergency and (iii) a rigorous statistical test for the significance of all the identified biclusters in any organism, including those without substantial functional annotations. QUBIC2 demonstrated considerably improved performance in detecting biclusters compared to other five widely used algorithms on various benchmark datasets from E.coli, Human and simulated data. QUBIC2 also showcased robust and superior performance on gene expression data generated by microarray, bulk RNA-Seq and scRNA-Seq.

    Availability and implementation

    The source code of QUBIC2 is freely available at https://github.com/OSU-BMBL/QUBIC2.

    Contact

    czhang87@iu.edu or qin.ma@osumc.edu

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less