skip to main content


Title: Constraining the Size of the Circumgalactic Medium Using the Transverse Autocorrelation Function of C iv Absorbers in Paired Quasar Spectra
Abstract

The circumgalactic medium (CGM) plays a vital role in the formation and evolution of galaxies, acting as a lifeline between galaxies and the surrounding intergalactic medium. In this study, we leverage a unique sample of quasar pairs to investigate the properties of the CGM with absorption line tomography. We present a new sample of medium-resolution Keck/ESI, Magellan/MagE, and VLT/XSHOOTER spectra of 29 quasar pairs at redshift 2 <z< 3. We supplement the sample with additional spectra of 32 pairs from the literature, creating a catalog of 61 quasar pairs with angular separations between 1.″7 and 132.″9 and projected physical separations (r) between 14 kpc and 887 kpc. We construct a catalog of 906 metal-line absorption doublets of Civ(λλ1548, 1550) with equivalent widths ranging from 6 m Å ≤Wr,1550≤ 2053 m Å. The best-fit linear model to the log-space equivalent width frequency distribution (logf(Wr)=mlog(Wr)+b) of the sample yields coefficients ofm= −1.44 ± 0.16 andb= −0.43 ± 0.16. To constrain the projected extent of Civ, we calculate the transverse autocorrelation function. The flattening of the autocorrelation function at lowrprovides a lower limit for the coherence length of the metal enriched CGM—on the order of 200h−1comoving kpc. This physical size constraint allows us to refine our understanding of the metals in the CGM, where the extent of Civin the CGM depends on gas flows, feedback, timescale of metal injection and mixing, and the mass of the host galaxies.

 
more » « less
Award ID(s):
1817125 1715630 2009417 2149985 1757321
NSF-PAR ID:
10368852
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
2
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 51
Size(s):
["Article No. 51"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

     
    more » « less
  2. Abstract

    The bimodal absorption system imaging campaign (BASIC) aims to characterize the galaxy environments of a sample of 36 Hi-selected partial Lyman limit systems (pLLSs) and Lyman limit systems (LLSs) in 23 QSO fields atz≲ 1. These pLLSs/LLSs provide a unique sample of absorbers with unbiased and well-constrained metallicities, allowing us to explore the origins of metal-rich and low-metallicity circumgalactic medium (CGM) atz< 1. Here we present Keck/KCWI and Very Large Telescope/MUSE observations of 11 of these QSO fields (19 pLLSs) that we combine with Hubble Space Telescope/Advanced Camera for Surveys imaging to identify and characterize the absorber-associated galaxies at 0.16 ≲z≲ 0.84. We find 23 unique absorber-associated galaxies, with an average of one associated galaxy per absorber. For seven absorbers, all with <10% solar metallicities, we find no associated galaxies withlogM9.0withinρ/Rvirand ∣Δv∣/vesc≤ 1.5 with respect to the absorber. We do not find any strong correlations between the metallicities or Hicolumn densities of the gas and most of the galaxy properties, except for the stellar mass of the galaxies: the low-metallicity ([X/H] ≤ −1.4) systems have a probability of0.390.15+0.16for having a host galaxy withlogM9.0withinρ/Rvir≤ 1.5, while the higher metallicity absorbers have a probability of0.780.13+0.10. This implies metal-enriched pLLSs/LLSs atz< 1 are typically associated with the CGM of galaxies withlogM>9.0, whereas low-metallicity pLLSs/LLSs are found in more diverse locations, with one population arising in the CGM of galaxies and another more broadly distributed in overdense regions of the universe. Using absorbers not associated with galaxies, we estimate the unweighted geometric mean metallicity of the intergalactic medium to be [X/H] ≲ −2.1 atz< 1, which is lower than previously estimated.

     
    more » « less
  3. Abstract

    We measure the correlation between black hole massMBHand host stellar massM*for a sample of 38 broad-line quasars at 0.2 ≲z≲ 0.8 (median redshiftzmed= 0.5). The black hole masses are derived from a dedicated reverberation mapping program for distant quasars, and the stellar masses are derived from two-band optical+IR Hubble Space Telescope imaging. Most of these quasars are well centered within ≲1 kpc from the host galaxy centroid, with only a few cases in merging/disturbed systems showing larger spatial offsets. Our sample spans two orders of magnitude in stellar mass (∼109–1011M) and black hole mass (∼107–109M) and reveals a significant correlation between the two quantities. We find a best-fit intrinsic (i.e., selection effects corrected)MBHM*,hostrelation oflog(MBH/M)=7.010.33+0.23+1.740.64+0.64log(M*,host/1010M), with an intrinsic scatter of0.470.17+0.24dex. Decomposing our quasar hosts into bulges and disks, there is a similarMBHM*,bulgerelation with slightly larger scatter, likely caused by systematic uncertainties in the bulge–disk decomposition. TheMBHM*,hostrelation atzmed= 0.5 is similar to that in local quiescent galaxies, with negligible evolution over the redshift range probed by our sample. With direct black hole masses from reverberation mapping and the large dynamical range of the sample, selection biases do not appear to affect our conclusions significantly. Our results, along with other samples in the literature, suggest that the locally measured black hole mass–host stellar mass relation is already in place atz∼ 1.

     
    more » « less
  4. Abstract

    I employ the Lucy rectification algorithm to recover the inclination-corrected distribution of local disk galaxies in the plane of absolute magnitude (Mi) and Hivelocity width (W20). By considering the inclination angle as a random variable with a known probability distribution, the novel approach eliminates one major source of uncertainty in studies of the Tully–Fisher relation: inclination angle estimation from axial ratio. Leveraging the statistical strength derived from the entire sample of 28,264 Hi-selected disk galaxies atz< 0.06 from the Arecibo Legacy Fast ALFA survey, I show that the restored distribution follows a sharp correlation that is approximately a power law between −16 >Mi> −22:Mi=M02.5β[log(W20/250km/s)], withM0= −19.77± 0.04 andβ= 4.39 ± 0.06. At the brighter end (Mi< −22), the slope of the correlation decreases toβ≈ 3.3, confirming previous results. Because the method accounts for measurement errors, the intrinsic dispersion of the correlation is directly measured:σ(logW20)0.06dex between −17 >Mi> −23, whileσ(Mi) decreases from ∼0.8 in slow rotators to ∼0.4 in fast rotators. The statistical rectification method holds significant potential, especially in the studies of intermediate-to-high-redshift samples, where limited spatial resolution hinders precise measurements of inclination angles.

     
    more » « less
  5. Abstract

    We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲z≲ 2.6 (zmean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass oflog(M*/M)med=8.290.43+0.51and a median star formation rate ofSFRHαmed=2.251.26+2.15Myr1. We measure the faint electron-temperature-sensitive [Oiii]λ4363 emission line at 2.5σ(4.1σ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of12+log(O/H)direct=7.880.22+0.25(0.150.06+0.12Z). We investigate the applicability at highzof locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM*, our composite is well represented by thez∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories(log(M*/M)med=8.920.22+0.31), we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM*and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii]λ3729/[Oii]λ3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density ofne=10+215cm3(ne=10+74cm3) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz∼ 2.

     
    more » « less