skip to main content


Title: COMAP Early Science. II. Pathfinder Instrument
Abstract

Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project Pathfinder is a first-generation instrument aiming to prove the concept and develop the technology for future experiments, as well as delivering early science products. With 19 receiver channels in a hexagonal focal plane arrangement on a 10.4 m antenna and an instantaneous 26–34 GHz frequency range with 2 MHz resolution, it is ideally suited to measuring CO (J= 1–0) fromz∼ 3. In this paper we discuss strategies for designing and building the Pathfinder and the challenges that were encountered. The design of the instrument prioritized LIM requirements over those of ancillary science. After a couple of years of operation, the instrument is well understood, and the first year of data is already yielding useful science results. Experience with this Pathfinder will guide the design of the next generations of experiments.

 
more » « less
Award ID(s):
1910999
NSF-PAR ID:
10368915
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;   « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 183
Size(s):
Article No. 183
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We forecast the prospects for cross-correlating future line intensity mapping (LIM) surveys with the current and future Ly-α forest measurements. Using large cosmological hydrodynamic simulations, we model the emission from the CO rotational transition in the CO Mapping Array Project LIM experiment at the 5-yr benchmark and the Ly-α forest absorption signal for extended Baryon Acoustic Oscillations (BOSS), Dark energy survey instrument (DESI), and Prime Focus multiplex Spectroscopy survey (PFS). We show that CO × Ly-α forest significantly enhances the detection signal-to-noise ratio (S/N) of CO, with up to $300{{\ \rm per\, cent}}$ improvement when correlated with the PFS Ly-α forest survey and a 50–75 per cent enhancement with the available eBOSS or the upcoming DESI observations. This is competitive with even CO × spectroscopic galaxy surveys. Furthermore, our study suggests that the clustering of CO emission is tightly constrained by CO × Ly-α forest due to the increased sensitivity and the simplicity of Ly-α absorption modelling. Foreground contamination or systematics are expected not to be shared between LIM and Ly-α forest observations, providing an unbiased inference. Ly-α forest will aid in detecting the first LIM signals. We also estimate that [C ii] × Ly-α forest measurements from Experiment for Cryogenic Large-Aperture Intensity Mapping and DESI/eBOSS should have a larger S/N than planned [C ii] × quasar observations by about an order of magnitude.

     
    more » « less
  2. We present a new upper limit on the cosmic molecular gas density at z=2.4−3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.129 Jy km/s. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosity L′CO of eBOSS quasars of ≤1.26×1011 K km pc2 s−1, or an average molecular gas density ρH2 in regions of the universe containing a quasar of ≤1.52×108 M⊙ cMpc−3. The L′CO upper limit falls among CO line luminosities obtained from individually-targeted quasars in the COMAP redshift range, and the ρH2 value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data. 
    more » « less
  3. ABSTRACT

    Line-intensity mapping (LIM) is an emerging technique to probe the large-scale structure of the Universe. By targeting the integrated intensity of specific spectral lines, it captures the emission from all sources and is sensitive to the astrophysical processes that drive galaxy evolution. Relating these processes to the underlying distribution of matter introduces observational and theoretical challenges, such as observational contamination and highly non-Gaussian fields, which motivate the use of simulations to better characterize the signal. In this work we present skyline , a computational framework to generate realistic mock LIM observations that include observational features and foreground contamination, as well as a variety of self-consistent tracer catalogues. We apply our framework to generate realizations of LIM maps from the multidark planck 2 simulations coupled to the universemachine galaxy formation model. We showcase the potential of our scheme by exploring the voxel intensity distribution and the power spectrum of emission lines such as 21 cm, CO, [C ii], and Lyman-α, their mutual cross-correlations, and cross-correlations with galaxy clustering. We additionally present cross-correlations between LIM and submillimetre extragalactic tracers of large-scale structure such as the cosmic infrared background and the thermal Sunyaev-Zel’dovich effect, as well as quantify the impact of galactic foregrounds, line interlopers, and instrument noise on LIM observations. These simulated products will be crucial in quantifying the true information content of LIM surveys and their cross-correlations in the coming decade, and to develop strategies to overcome the impact of contaminants and maximize the scientific return from LIM experiments.

     
    more » « less
  4. Abstract

    We present a new upper limit on the cosmic molecular gas density atz= 2.4–3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1–0) line emission of 0.129 Jy km s−1. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosityLCOof eBOSS quasars of ≤1.26 × 1011K km pc2s−1, or an average molecular gas densityρH2in regions of the Universe containing a quasar of ≤1.52 × 108McMpc−3. TheLCOupper limit falls among CO line luminosities obtained from individually targeted quasars in the COMAP redshift range, and theρH2value is comparable to upper limits obtained from other line intensity mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5 yr COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data.

     
    more » « less
  5. ABSTRACT

    Line intensity mapping (LIM) experiments probing the nearby Universe can expect a considerable amount of cosmic infrared background (CIB) continuum emission from near and far-infrared galaxies. For the purpose of using LIM to constrain the star formation rate (SFR), we argue that the CIB continuum – traditionally treated as contamination – can be combined with the LIM signal to enhance the SFR constraints achievable. We first present a power spectrum model that combines continuum and line emissions assuming a common SFR model. We subsequently analyse the effectiveness of the joint model in the context of the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM), which utilizes the $[{\rm C\, \small {II}}]$ molecular line to study the SFR. We numerically compute the theoretical power spectra according to our model and the EXCLAIM survey specifics, and perform Fisher analysis to forecast the SFR constraints. We find that although the joint model has no considerable advantage over LIM alone assuming the current survey level of EXCLAIM, its effects become significant when we consider more optimistic values of survey resolution and angular span that are expected of future LIM experiments. We show that the CIB is not only an additional SFR sensitive signal, but also serves to break the SFR parameter degeneracy that naturally emerges from the $[{\rm C\, \small {II}}]$ Fisher matrix. For this reason, addition of the CIB will allow improvements in the survey parameters to be better reflected in the SFR constraints, and can be effectively utilized by future LIM experiments.

     
    more » « less