skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Boosting line intensity map signal-to-noise ratio with the Ly-α forest cross-correlation
ABSTRACT We forecast the prospects for cross-correlating future line intensity mapping (LIM) surveys with the current and future Ly-α forest measurements. Using large cosmological hydrodynamic simulations, we model the emission from the CO rotational transition in the CO Mapping Array Project LIM experiment at the 5-yr benchmark and the Ly-α forest absorption signal for extended Baryon Acoustic Oscillations (BOSS), Dark energy survey instrument (DESI), and Prime Focus multiplex Spectroscopy survey (PFS). We show that CO × Ly-α forest significantly enhances the detection signal-to-noise ratio (S/N) of CO, with up to $$300{{\ \rm per\, cent}}$$ improvement when correlated with the PFS Ly-α forest survey and a 50–75 per cent enhancement with the available eBOSS or the upcoming DESI observations. This is competitive with even CO × spectroscopic galaxy surveys. Furthermore, our study suggests that the clustering of CO emission is tightly constrained by CO × Ly-α forest due to the increased sensitivity and the simplicity of Ly-α absorption modelling. Foreground contamination or systematics are expected not to be shared between LIM and Ly-α forest observations, providing an unbiased inference. Ly-α forest will aid in detecting the first LIM signals. We also estimate that [C ii] × Ly-α forest measurements from Experiment for Cryogenic Large-Aperture Intensity Mapping and DESI/eBOSS should have a larger S/N than planned [C ii] × quasar observations by about an order of magnitude.  more » « less
Award ID(s):
2107821
PAR ID:
10431905
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1933-1945
Size(s):
p. 1933-1945
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT In this work, we explore the application of intensity mapping to detect extended Ly α emission from the IGM via cross-correlation of PAUS images with Ly α forest data from eBOSS and DESI. Seven narrow-band (FWHM = 13 nm) PAUS filters have been considered, ranging from 455 to 515 nm in steps of 10 nm, which allows the observation of Ly α emission in a range 2.7 < z < 3.3. The cross-correlation is simulated first in an area of 100 deg2 (PAUS projected coverage), and second in two hypothetical scenarios: a deeper PAUS (complete up to iAB < 24 instead of iAB < 23, observation time ×6), and an extended PAUS coverage of 225 deg2 (observation time ×2.25). A hydrodynamic simulation of size 400 Mpc h−1 is used to simulate both extended Ly α emission and absorption, while the foregrounds in PAUS images have been simulated using a lightcone mock catalogue. Using an optimistic estimation of uncorrelated PAUS noise, the total probability of a non-spurious detection is estimated to be 1.8 per cent and 4.5 per cent for PAUS-eBOSS and PAUS-DESI, from a run of 1000 simulated cross-correlations with different realisations of instrumental noise and quasar positions. The hypothetical PAUS scenarios increase this probability to 15.3 per cent (deeper PAUS) and 9.0 per cent (extended PAUS). With realistic correlated noise directly measured from PAUS images, these probabilities become negligible. Despite these negative results, some evidences suggest that this methodology may be more suitable to broad-band surveys. 
    more » « less
  2. We present a new upper limit on the cosmic molecular gas density at z=2.4−3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.129 Jy km/s. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosity L′CO of eBOSS quasars of ≤1.26×1011 K km pc2 s−1, or an average molecular gas density ρH2 in regions of the universe containing a quasar of ≤1.52×108 M⊙ cMpc−3. The L′CO upper limit falls among CO line luminosities obtained from individually-targeted quasars in the COMAP redshift range, and the ρH2 value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data. 
    more » « less
  3. Abstract We report the detection of 21 cm emission at an average redshift z ¯ = 2.3 in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyαforest from eBOSS. Data collected by CHIME over 88 days in the 400–500 MHz frequency band (1.8 <z< 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales withk≲ 0.13 Mpc−1at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyαforest flux transmission spectra to estimate the 21 cm–Lyαcross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σdetection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals ∼6–10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of 21 cm emission to date, and they set the stage for future 21 cm intensity mapping analyses atz> 1.8. 
    more » « less
  4. Abstract Line-intensity mapping (IM) experiments seek to perform statistical measurements of large-scale structure with spectral lines such as 21 cm, CO, and Lyα. A challenge in these observations is to ensure that astrophysical foregrounds, such as galactic synchrotron emission in 21 cm measurements, are properly removed. One method that has the potential to reduce foreground contamination is to cross correlate with a galaxy survey that overlaps with the IM volume. However, telescopes sensitive to high-redshift galaxies typically have small field of views compared to IM surveys. Thus, a galaxy survey for cross correlation would necessarily consist of pencil beams that sparsely fill the IM volume. In this paper, we develop the formalism to forecast the sensitivity of cross correlations between IM experiments and pencil-beam galaxy surveys. We find that a random distribution of pencil beams leads to very similar overall sensitivity as a lattice spaced across the IM survey and derive a simple formula for random configurations that agrees with the Fisher matrix formalism. We explore examples of combining high-redshift James Webb Space Telescope (JWST) observations with both an SPHEREx-like LyαIM survey and a 21 cm experiment based on the Hydrogen Epoch of Reionization Array (HERA). We find that the JWST-SPHEREx case is promising, leading to a total signal-to-noise ratio of ∼5 after 100 total hours of JWST (atz= 7). We find that HERA is not well-suited for this approach owing to its drift-scan strategy, but that a similar experiment that can integrate down on one field could be. 
    more » « less
  5. Abstract Based on Sloan Digital Sky Survey Data Release 16, we have detected the large-scale structure of Ly α emission in the universe at redshifts z = 2–3.5 by cross-correlating quasar positions and Ly α emission imprinted in the residual spectra of luminous red galaxies. We apply an analytical model to fit the corresponding Ly α surface brightness profile and multipoles of the redshift-space quasar–Ly α emission cross-correlation function. The model suggests an average cosmic Ly α luminosity density of 6.6 − 3.1 + 3.3 × 10 40 erg s − 1 cMpc − 3 , a ∼2 σ detection with a median value about 8–9 times those estimated from deep narrowband surveys of Ly α emitters at similar redshifts. Although the low signal-to-noise ratio prevents us from a significant detection of the Ly α forest–Ly α emission cross-correlation, the measurement is consistent with the prediction of our best-fit model from quasar–Ly α emission cross-correlation within current uncertainties. We rule out the scenario where the Ly α photons mainly originate from quasars. We find that Ly α emission from star-forming galaxies, including contributions from that concentrated around the galaxy centers and that in diffuse Ly α -emitting halos, is able to explain the bulk of the Ly α luminosity density inferred from our measurements. Ongoing and future surveys can further improve the measurements and advance our understanding of the cosmic Ly α emission field. 
    more » « less