skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Distribution of Satellite Galaxies in the IllustrisTNG100 Simulation
Abstract We investigate the spatial distribution of the satellites of isolated host galaxies in the IllustrisTNG100 simulation. In agreement with a previous, similar analysis of the Illustris-1 simulation, the satellites are typically poor tracers of the mean host mass density. Unlike the Illustris-1 satellites, here the spatial distribution of the complete satellite sample is well fitted by an NFW profile; however, the concentration is a factor of ∼2 lower than that of the mean host mass density. The spatial distributions of the brightest 50% and faintest 50% of the satellites are also well fitted by NFW profiles, but the concentrations differ by a factor of ∼2. When the sample is subdivided by host color and luminosity, the number density profiles for blue satellites generally fall below the mean host mass density profiles, while the number density profiles for red satellites generally rise above the mean host mass density profiles. These opposite, systematic offsets combine to yield a moderately good agreement between the mean mass density profile of the brightest blue hosts and the corresponding number density profile of their satellites. Lastly, we subdivide the satellites according to the redshifts at which they joined their hosts. From this, we find that neither the oldest one-third of the satellites nor the youngest one-third of the satellites faithfully trace the mean host mass density.  more » « less
Award ID(s):
2009397
PAR ID:
10368921
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 161
Size(s):
Article No. 161
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A recent observational study found that the projected spatial distributions of the satellites of bright, isolated host galaxies tend to be lopsided with respect to the locations of the hosts. Here, we examine the spatial distributions of the satellites of a large number of bright, isolated host galaxies that were obtained from mock redshift surveys of a Λ-cold dark matter (ΛCDM) simulation. Host galaxies and their satellites were identified using selection criteria that are identical to those used in the observational study, allowing for a direct comparison of the results for the simulated and observed systems. To characterize the spatial distribution of the satellites, we adopt two statistics: (1) the pairwise clustering of the satellites and (2) the mean resultant length. In agreement with the observational study, we find a strong tendency for satellites in the simulation to be located on the same side of their host, and the signal is most pronounced for the satellites of blue hosts. These lopsided satellite distributions are not solely attributable to incompleteness of the observed satellite catalog or the presence of objects that have been falsely identified as satellites. In addition, satellites that joined their hosts’ halos in the distant past (≳8 Gyr) show a pronounced lopsidedness in their spatial distributions and, therefore, the lopsidedness is not solely attributable to the late-time accretion of satellites. 
    more » « less
  2. ABSTRACT While many tensions between Local Group (LG) satellite galaxies and Λ cold dark matter cosmology have been alleviated through recent cosmological simulations, the spatial distribution of satellites remains an important test of physical models and physical versus numerical disruption in simulations. Using the FIRE-2 cosmological zoom-in baryonic simulations, we examine the radial distributions of satellites with $$M_*\gt 10^5$$ M⊙ around eight isolated Milky Way (MW) mass host galaxies and four hosts in LG-like pairs. We demonstrate that these simulations resolve the survival and physical destruction of satellites with $$M_*\gtrsim 10^5$$ M⊙. The simulations broadly agree with LG observations, spanning the radial profiles around the MW and M31. This agreement does not depend strongly on satellite mass, even at distances ≲100 kpc. Host-to-host variation dominates the scatter in satellite counts within 300 kpc of the hosts, while time variation dominates scatter within 50 kpc. More massive host galaxies within our sample have fewer satellites at small distances, likely because of enhanced tidal destruction of satellites via the baryonic discs of host galaxies. Furthermore, we quantify and provide fits to the tidal depletion of subhaloes in baryonic relative to dark matter-only simulations as a function of distance. Our simulated profiles imply observational incompleteness in the LG even at $$M_*\gtrsim 10^5$$ M⊙: we predict 2–10 such satellites to be discovered around the MW and possibly 6–9 around M31. To provide cosmological context, we compare our results with the radial profiles of satellites around MW analogues in the SAGA survey, finding that our simulations are broadly consistent with most SAGA systems. 
    more » « less
  3. Abstract We present radial profiles of luminosity-weighted age (ageL) and ΔΣSFRfor various populations of high- and low-mass central and satellite galaxies in the TNG100 cosmological simulation. Using these profiles, we investigate the impact of intrinsic and environmental factors on the radial distribution of star formation. For both central galaxies and satellites, we investigate the effects of black hole mass, cumulative active galactic nucleus (AGN) feedback energy, morphology, halo mass, and local galaxy overdensity on the profiles. In addition, we investigate the dependence of radial profiles of the satellite galaxies as a function of the redshifts at which they joined their hosts, as well as the net change in star-forming gas mass since the satellites joined their host. We find that high-mass (M*> 1010.5M) central and satellite galaxies show evidence of inside-out quenching driven by AGN feedback. Effects from environmental processes only become apparent in averaged profiles at extreme halo masses and local overdensities. We find that the dominant quenching process for low-mass galaxies (M*< 1010M) is environmental, generally occurring at low halo mass and high local galaxy overdensity for low-mass central galaxies and at high host halo masses for low-mass satellite galaxies. Overall, we find that environmental processes generally drive quenching from the outside-in. 
    more » « less
  4. ABSTRACT In this paper, we construct the circular velocity curve of the Milky Way out to ∼30 kpc, providing an updated model of the dark matter density profile. We derive precise parallaxes for 120 309 stars with a data-driven model, using APOGEE DR17 spectra combined with GaiaDR3, 2MASS, and WISE photometry. At outer galactic radii up to 30 kpc, we find a significantly faster decline in the circular velocity curve compared to the inner parts. This decline is better fit with a cored Einasto profile with a slope parameter $$0.91^{+0.04}_{-0.05}$$ than a generalized Navarro–Frenk–White (NFW) profile. The virial mass of the best-fitting dark matter halo profile is only $$1.81^{+0.06}_{-0.05}\times 10^{11}$$ M⊙, significantly lower than what a generalized NFW profile delivers. We present a study of the potential systematics, affecting mainly large radii. Such a low mass for the Galaxy is driven by the functional forms tested, given that it probes beyond our measurements. It is found to be in tension with mass measurements from globular clusters, dwarf satellites, and streams. Our best-fitting profile also lowers the expected dark matter annihilation signal flux from the galactic centre by more than an order of magnitude, compared to an NFW profile-fit. In future work, we will explore profiles with more flexible functional forms to more fully leverage the circular velocity curve and observationally constrain the properties of the Milky Way’s dark matter halo. 
    more » « less
  5. Abstract We present results from Identifying Dwarfs of MC Analog GalaxiEs (ID-MAGE), a survey aimed at identifying and characterizing unresolved satellite galaxies around 35 nearby LMC- and SMC-mass hosts (D = 4−10 Mpc). We use archival DESI Legacy Survey imaging data and perform an extensive search for dwarf satellites, extending out to a radius of 150 kpc (∼Rvir). We identify 355 candidate satellite galaxies, including 264 new discoveries. Extensive tests with injected galaxies demonstrate that the survey is complete down toMV ∼ −9.0 (assuming the distance of the host) andμ0,V ∼ 26 mag arcsec−2(assuming ann = 1 Sérsic profile). We perform consistent photometry, via Sérsic profile fitting, on all candidates and have initiated a comprehensive follow-up campaign to confirm and characterize candidates. Through a systematic visual inspection campaign, we classify the top candidates as high-likelihood satellites. On average, we find 4.0 ± 1.4 high-likelihood candidate satellites per LMC-mass host and 2.1 ± 0.6 per SMC-mass host, which is within the range predicted by cosmological models. We use this sample to establish upper and lower estimates on the satellite luminosity function of LMC-/SMC-mass galaxies. ID-MAGE nearly triples the number of low-mass galaxies surveyed for satellites with well-characterized completeness limits, providing a unique data set to explore small-scale structure and dwarf galaxy evolution around low-mass hosts in diverse environments. 
    more » « less