Environment plays a critical role in shaping the assembly of low-mass galaxies. Here, we use the U
We present radial profiles of luminosity-weighted age (age
- PAR ID:
- 10562345
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 978
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 67
- Size(s):
- Article No. 67
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract niverse Machine (UM) galaxy–halo connection framework and Data Release 3 of the Satellites Around Galactic Analogs (SAGA) Survey to place dwarf galaxy star formation and quenching into a cosmological context. UM is a data-driven forward model that flexibly parameterizes galaxy star formation rates (SFRs) using only halo mass and assembly history. We add a new quenching model to UM, tailored for galaxies withm ⋆≲ 109M ⊙, and constrain the model down tom ⋆≳ 107M ⊙using new SAGA observations of 101 satellite systems around Milky Way (MW)–mass hosts and a sample of isolated field galaxies in a similar mass range from the Sloan Digital Sky Survey. The new best-fit model, “UM-SAGA,” reproduces the satellite stellar mass functions, average SFRs, and quenched fractions in SAGA satellites while keeping isolated dwarfs mostly star-forming. The enhanced quenching in satellites relative to isolated field galaxies leads the model to maximally rely on halo assembly to explain the observed environmental quenching. Extrapolating the model down tom ⋆∼ 106.5M ⊙yields a quenched fraction of ≳30% for isolated field galaxies and ≳80% for satellites of MW-mass hosts at this stellar mass. Spectroscopic surveys can soon test this specific prediction to reveal the relative importance of internal feedback, cessation of mass and gas accretion, satellite-specific gas processes, and reionization for the evolution of faint low-mass galaxies. -
Abstract Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way–mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ∼400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satellite
M *≈ 108M ⊙. We may see hints that quenching is less efficient at larger radii. Through comparison with the semianalytic modeling codeSatGen , we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching times are possible via ram pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing. -
Abstract To better understand the formation of large, low-surface-brightness galaxies, we measure the correlation function between ultradiffuse galaxy (UDG) candidates and Milky Way analogs (MWAs). We find that: (1) the projected radial distribution of UDG satellites (projected surface density ∝
r −0.84±0.06) is consistent with that of normal satellite galaxies; (2) the number of UDG satellites per MWA (S UDG) is ∼0.5 ± 0.1 over projected radii from 20 to 250 kpc and −17 <M r < −13.5; (3)S UDGis consistent with a linear extrapolation of the relationship between the number of UDGs per halo versus halo mass obtained over galaxy group and cluster scales; (4) red UDG satellites dominate the population of UDG satellites (∼80%); (5) over the range of satellite magnitudes studied, UDG satellites comprise ∼10% of the satellite galaxy population of MWAs; and (6) a significant fraction of these (∼13%) have estimated total masses >1010.9M ⊙or, equivalently, at least half the halo mass of the LMC, and populate a large fraction (∼18%) of the expected subhalos down to these masses. All of these results suggest a close association between the overall low-mass galaxy population and UDGs, which we interpret as favoring models where UDG formation principally occurs within the general context of low-mass galaxy formation over models invoking more exotic physical processes specifically invoked to form UDGs. -
Abstract We present a complete census of candidate nuggets, i.e., dense galaxies likely formed by compaction with intense gas influx, within the volume-limited redshift
z ∼ 0 REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey. These nuggets span all evolutionary stages and 3 orders of magnitude in stellar mass (M *∼ 108to 1011M ⊙) from the dwarf to the giant regime. We develop selection criteria for ourz ∼ 0 nugget candidates based on structure and introduce the use of environmental criteria to eliminate nugget-like objects with suspected non-compaction origins. The resultingz ∼ 0 nuggets follow expectations with respect to structure (i.e., density, size), population frequency, and likely origins. We show that the properties of our nugget census are consistent with permanent quenching above the gas-richness threshold scale (halo mass M halo∼ 1011.4M ⊙), cyclic temporary quenching below the threshold scale, and feedback from active galactic nuclei (AGN) assisting in permanent quenching. As predicted in simulations, most nuggets quench within a halo mass range ofM halo∼ 1011.45to 1011.9M ⊙. We find ∼0.29 dex scatter around the star-forming main sequence for candidate blue nuggets below the threshold scale, which is consistent with temporary quenching as seen in simulations. A transitional population of green nuggets appears above the threshold scale. AGN also become more common in nuggets above this scale, and we see a likely AGN excess in nuggets versus comparably selected non-nuggets. Our results provide the first observational confirmation of the mass-dependent, AGN-mediated shift from cyclic quenching to halo quenching in nuggets. -
ABSTRACT The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($M_{*}\lesssim 10^7\, \rm {M}_{\odot }$) are mostly quiescent and higher mass satellites ($M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$) are mostly star forming, with intermediate-mass satellites ($M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$, they do not generally reproduce SAGA’s turnover at lower masses.