skip to main content


Title: Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod
Abstract

The role of epistasis in driving adaptation has remained an unresolved problem dating back to the Evolutionary Synthesis. In particular, whether epistatic interactions among genes could promote parallel evolution remains unexplored. To address this problem, we employ an Evolve and Resequence (E&R) experiment, using the copepodEurytemora affinis, to elucidate the evolutionary genomic response to rapid salinity decline. Rapid declines in coastal salinity at high latitudes are a predicted consequence of global climate change. Based on time-resolved pooled whole-genome sequencing, we uncover a remarkably parallel, polygenic response across ten replicate selection lines, with 79.4% of selected alleles shared between lines by the tenth generation of natural selection. Using extensive computer simulations of our experiment conditions, we find that this polygenic parallelism is consistent with positive synergistic epistasis among alleles, far more so than other mechanisms tested. Our study provides experimental and theoretical support for a novel mechanism promoting repeatable polygenic adaptation, a phenomenon that may be common for selection on complex physiological traits.

 
more » « less
Award ID(s):
1658517 2055356
NSF-PAR ID:
10368932
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With climate change, habitat salinity is shifting rapidly throughout the globe. In addition, many destructive freshwater invaders are recent immigrants from saline habitats. Recently, populations of the copepod Eurytemora affinis species complex have invaded freshwater habitats multiple times independently from saline estuaries on three continents. This review discusses features of this species complex that could enhance their evolutionary potential during rapid environmental change. Remarkably, across independent freshwater invasions, natural selection has repeatedly favored the same alleles far more than expected. This high degree of parallelism is surprising, given the expectation of nonparallel evolution for polygenic adaptation. Factors such as population structure and the genome architecture underlying critical traits under selection might help drive rapid adaptation and parallel evolution. Given the preponderance of saline-to-freshwater invasions and climate-induced salinity change, the principles found here could provide invaluable insights into mechanisms operating in other systems and the potential for adaptation in a changing planet. 
    more » « less
  2. Summary

    The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance.

    Here, using herbicide‐resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget‐site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations.

    We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost.

    Overall, our work suggests that NTSR glyphosate resistance inI. purpureais conferred by multiple genes which are potentially maintained through generationsviaILD, and that the fitness cost associated with resistance in this species is likely a by‐product of genetic hitchhiking.

     
    more » « less
  3. Summary

    The relevance of flowering time variation and plasticity to climate adaptation requires a comprehensive empirical assessment. We investigated natural selection and the genetic architecture of flowering time in Arabidopsis through field experiments in Europe across multiple sites and seasons.

    We estimated selection for flowering time, plasticity and canalization. Loci associated with flowering time, plasticity and canalization by genome‐wide association studies were tested for a geographic signature of climate adaptation.

    Selection favored early flowering and increased canalization, except at the northernmost site, but was rarely detected for plasticity. Genome‐wide association studies revealed significant associations with flowering traits and supported a substantial polygenic inheritance. Alleles associated with late flowering, including functionalFRIGIDAvariants, were more common in regions experiencing high annual temperature variation. Flowering time plasticity to fall vs spring and summer environments was associated withGIGANTEA SUPPRESSOR 5, which promotes early flowering under decreasing day length and temperature.

    The finding that late flowering genotypes and alleles are associated with climate is evidence for past adaptation. Real‐time phenotypic selection analysis, however, reveals pervasive contemporary selection for rapid flowering in agricultural settings across most of the species range. The response to this selection may involve genetic shifts in environmental cuing compared to the ancestral state.

     
    more » « less
  4. Urbanization drastically transforms landscapes, resulting in fragmentation, degradation, and the loss of local biodiversity. Yet, urban environments also offer opportunities to observe rapid evolutionary change in wild populations that survive and even thrive in these novel habitats. In many ways, cities represent replicated “natural experiments” in which geographically separated populations adaptively respond to similar selection pressures over rapid evolutionary timescales. Little is known, however, about the genetic basis of adaptive phenotypic differentiation in urban populations nor the extent to which phenotypic parallelism is reflected at the genomic level with signatures of parallel selection. Here, we analyzed the genomic underpinnings of parallel urban-associated phenotypic change in Anolis cristatellus , a small-bodied neotropical lizard found abundantly in both urbanized and forested environments. We show that phenotypic parallelism in response to parallel urban environmental change is underlain by genomic parallelism and identify candidate loci across the Anolis genome associated with this adaptive morphological divergence. Our findings point to polygenic selection on standing genetic variation as a key process to effectuate rapid morphological adaptation. Identified candidate loci represent several functions associated with skeletomuscular development, morphology, and human disease. Taken together, these results shed light on the genomic basis of complex morphological adaptations, provide insight into the role of contingency and determinism in adaptation to novel environments, and underscore the value of urban environments to address fundamental evolutionary questions. 
    more » « less
  5. Abstract

    Plant–insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome‐ or metabolome‐scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant–insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome‐wide genetic variation in the model plantMedicago truncatulaforLycaeides melissacaterpillar growth and survival (larval performance). Using a rearing experiment and a whole‐genome SNP data set (>5 million SNPs), we found that polygenic variation inM. truncatulaexplains 9%–41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multipleM. truncatulaalleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect ofM. truncatulaalleles onL. melissaperformance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation inM. truncatulahas a substantial effect on the successful development ofL. melissacaterpillars (i.e., on a plant–insect interaction), and further point toward traits potentially mediating this genetic effect.

     
    more » « less