With climate change, habitat salinity is shifting rapidly throughout the globe. In addition, many destructive freshwater invaders are recent immigrants from saline habitats. Recently, populations of the copepod Eurytemora affinis species complex have invaded freshwater habitats multiple times independently from saline estuaries on three continents. This review discusses features of this species complex that could enhance their evolutionary potential during rapid environmental change. Remarkably, across independent freshwater invasions, natural selection has repeatedly favored the same alleles far more than expected. This high degree of parallelism is surprising, given the expectation of nonparallel evolution for polygenic adaptation. Factors such as population structure and the genome architecture underlying critical traits under selection might help drive rapid adaptation and parallel evolution. Given the preponderance of saline-to-freshwater invasions and climate-induced salinity change, the principles found here could provide invaluable insights into mechanisms operating in other systems and the potential for adaptation in a changing planet.
more »
« less
Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod
Abstract The role of epistasis in driving adaptation has remained an unresolved problem dating back to the Evolutionary Synthesis. In particular, whether epistatic interactions among genes could promote parallel evolution remains unexplored. To address this problem, we employ an Evolve and Resequence (E&R) experiment, using the copepodEurytemora affinis, to elucidate the evolutionary genomic response to rapid salinity decline. Rapid declines in coastal salinity at high latitudes are a predicted consequence of global climate change. Based on time-resolved pooled whole-genome sequencing, we uncover a remarkably parallel, polygenic response across ten replicate selection lines, with 79.4% of selected alleles shared between lines by the tenth generation of natural selection. Using extensive computer simulations of our experiment conditions, we find that this polygenic parallelism is consistent with positive synergistic epistasis among alleles, far more so than other mechanisms tested. Our study provides experimental and theoretical support for a novel mechanism promoting repeatable polygenic adaptation, a phenomenon that may be common for selection on complex physiological traits.
more »
« less
- PAR ID:
- 10368932
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Salinity is a key factor that structures biodiversity on the planet. With anthropogenic change, such as climate change and species invasions, many populations are facing rapid and dramatic changes in salinity throughout the globe. Studies on the copepod Eurytemora affinis species complex have implicated ion transporter gene families as major loci contributing to salinity adaptation during freshwater invasions. Laboratory experiments and population genomic surveys of wild populations have revealed evolutionary shifts in genome-wide gene expression and parallel genomic signatures of natural selection during independent salinity transitions. Our results suggest that balancing selection in the native range and epistatic interactions among specific ion transporter paralogs could contribute to parallel freshwater adaptation. Overall, these studies provide unprecedented insights into evolutionary mechanisms underlying physiological adaptation during rapid salinity change.more » « less
-
Abstract BackgroundRapid morphological change is emerging as a consequence of climate change in many systems. It is intuitive to hypothesize that temporal morphological trends are driven by the same selective pressures that have established well-known ecogeographic patterns over spatial environmental gradients (e.g., Bergman’s and Allen’s rules). However, mechanistic understanding of contemporary morphological shifts is lacking. ResultsWe combine morphological data and whole genome sequencing from a four-decade dataset in the migratory bird hermit thrush (Catharus guttatus) to test whether morphological shifts over time are accompanied by genetic change. Using genome-wide association, we identify alleles associated with body size, bill length, and wing length. Shifts in morphology and concordant shifts in morphology-associated alleles over time would support a genetic basis for the observed changes in morphology over recent decades, potentially an adaptive response to climate change. In our data, bill size decreases were paralleled by genetic shifts in bill size-associated alleles. On the other hand, alleles associated with body size showed no shift in frequency over time. ConclusionsTogether, our results show mixed support for evolutionary explanations of morphological response to climate change. Temporal shifts in alleles associated with bill size support the hypothesis that selection is driving temporal morphological trends. The lack of evidence for genetic shifts in body size alleles could be explained by a large role of plasticity or technical limitations associated with the likely polygenic architecture of body size, or both. Disentangling the mechanisms responsible for observed morphological response to changing environments will be vital for predicting future organismal and population responses to climate change.more » « less
-
ABSTRACT Invasive species with native ranges spanning strong environmental gradients are well suited for examining the roles of selection and population history in rapid adaptation to new habitats, providing insight into potential evolutionary responses to climate change. The Atlantic oyster drill (Urosalpinx cinerea) is a marine snail whose native range spans the strongest coastal latitudinal temperature gradient in the world, with invasive populations established on the US Pacific coast. Here, we leverage this system using genome‐wide SNPs and environmental data to examine invasion history and identify genotype–environment associations indicative of local adaptation across the native range, and then assess evidence for allelic frequency shifts that would signal rapid adaptation within invasive populations. We demonstrate strong genetic structuring among native regions which aligns with life history expectations, identifying southern New England as the source of invasive populations. Then, we identify putatively thermally adaptive loci across the native range but find no evidence of allele frequency shifts in invasive populations that suggest rapid adaptation to new environments. Our results indicate that while these loci may underpin local thermal adaptation in their native range, selection is relaxed in invasive populations, perhaps due to complex polygenic architecture underlying thermal traits and/or standing capacity for phenotypic plasticity. Given the prolific invasion ofUrosalpinx, our study suggests population success in new environments is influenced by factors other than selection on standing genetic variation that underlies local adaptation in the native range and highlights the importance of considering population history and environmental selection pressures when evaluating adaptive capacity.more » « less
-
Urbanization drastically transforms landscapes, resulting in fragmentation, degradation, and the loss of local biodiversity. Yet, urban environments also offer opportunities to observe rapid evolutionary change in wild populations that survive and even thrive in these novel habitats. In many ways, cities represent replicated “natural experiments” in which geographically separated populations adaptively respond to similar selection pressures over rapid evolutionary timescales. Little is known, however, about the genetic basis of adaptive phenotypic differentiation in urban populations nor the extent to which phenotypic parallelism is reflected at the genomic level with signatures of parallel selection. Here, we analyzed the genomic underpinnings of parallel urban-associated phenotypic change in Anolis cristatellus , a small-bodied neotropical lizard found abundantly in both urbanized and forested environments. We show that phenotypic parallelism in response to parallel urban environmental change is underlain by genomic parallelism and identify candidate loci across the Anolis genome associated with this adaptive morphological divergence. Our findings point to polygenic selection on standing genetic variation as a key process to effectuate rapid morphological adaptation. Identified candidate loci represent several functions associated with skeletomuscular development, morphology, and human disease. Taken together, these results shed light on the genomic basis of complex morphological adaptations, provide insight into the role of contingency and determinism in adaptation to novel environments, and underscore the value of urban environments to address fundamental evolutionary questions.more » « less
An official website of the United States government
