skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Genetic and morphological shifts associated with climate change in a migratory bird
Abstract BackgroundRapid morphological change is emerging as a consequence of climate change in many systems. It is intuitive to hypothesize that temporal morphological trends are driven by the same selective pressures that have established well-known ecogeographic patterns over spatial environmental gradients (e.g., Bergman’s and Allen’s rules). However, mechanistic understanding of contemporary morphological shifts is lacking. ResultsWe combine morphological data and whole genome sequencing from a four-decade dataset in the migratory bird hermit thrush (Catharus guttatus) to test whether morphological shifts over time are accompanied by genetic change. Using genome-wide association, we identify alleles associated with body size, bill length, and wing length. Shifts in morphology and concordant shifts in morphology-associated alleles over time would support a genetic basis for the observed changes in morphology over recent decades, potentially an adaptive response to climate change. In our data, bill size decreases were paralleled by genetic shifts in bill size-associated alleles. On the other hand, alleles associated with body size showed no shift in frequency over time. ConclusionsTogether, our results show mixed support for evolutionary explanations of morphological response to climate change. Temporal shifts in alleles associated with bill size support the hypothesis that selection is driving temporal morphological trends. The lack of evidence for genetic shifts in body size alleles could be explained by a large role of plasticity or technical limitations associated with the likely polygenic architecture of body size, or both. Disentangling the mechanisms responsible for observed morphological response to changing environments will be vital for predicting future organismal and population responses to climate change.  more » « less
Award ID(s):
2146950
PAR ID:
10608058
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
BioMed Central
Date Published:
Journal Name:
BMC Biology
Volume:
23
Issue:
1
ISSN:
1741-7007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigated the potential mechanisms driving habitat‐linked genetic divergence within a bird species endemic to a single 250‐km2island. The island scrub‐jay (Aphelocoma insularis) exhibits microgeographic divergence in bill morphology across pine–oak ecotones on Santa Cruz Island, California (USA), similar to adaptive differences described in mainland congeners over much larger geographic scales. To test whether individuals exhibit genetic differentiation related to habitat type and divergence in bill length, we genotyped over 3000 single nucleotide polymorphisms in 123 adult island scrub‐jay males from across Santa Cruz Island using restriction site‐associated DNA sequencing. Neutral landscape genomic analyses revealed that genome‐wide genetic differentiation was primarily related to geographic distance and differences in habitat composition. We also found 168 putatively adaptive loci associated with habitat type using multivariate redundancy analysis while controlling for spatial effects. Finally, two genome‐wide association analyses revealed a polygenic basis to variation in bill length with multiple loci detected in or near genes known to affect bill morphology in other birds. Our findings support the hypothesis that divergent selection at microgeographic scales can cause adaptive divergence in the presence of ongoing gene flow. 
    more » « less
  2. Abstract Color polymorphic animals offer a unique system for studying intraspecific phenotypic responses to climate change. Discrete color morphs are easy to identify, and correlated trait responses of morphs can indicate how climate warming may facilitate long-term maintenance of polymorphisms. We use a historical dataset spanning 43 years to examine temporal shifts in color morph frequency and body size in response to climate in the Eastern Red-backed Salamander, Plethodon cinereus , which contains a widespread striped/unstriped color polymorphism. We created a pipeline to extract high-throughput trait data from fluid-preserved museum specimens where we batch-photographed salamanders, de-aggregated individual specimens from photographs, and solicited help of community scientists to score color morphs. We used a linear modeling framework that includes information about spatial population structure to demonstrate that color morph frequency and body size vary in response to climate, elevation, and over time, with an overall trend of higher frequency and decreased body size of the striped morph, but increased size of the unstriped morph. These surprising results suggest that morphs may be responding to multiple climate and geographic drivers through co-adapted morphological changes. This work highlights new practices of extracting trait data from museum specimens to demonstrate species phenotypes response to climate change. 
    more » « less
  3. Abstract Anthropogenic activities are rapidly changing the environment, and species that do not respond face a higher risk of extinction. Species may respond to environmental changes by modifying their behaviors, shifting their distributions, or changing their morphology. Recent morphological responses are often measured by changes in body size. Changes in body size are often attributed to climate change, but may instead be due to differences in available resources associated with changes in local land‐use. The effects of temperature and land‐use can be uncoupled in populations of the small carpenter beeCeratina calcarata, which have experienced changes in agricultural and urban cover independent of climate change. We studied how the morphology of this bee has changed over the past 118 years (1902–2019) in relation to climate change and the past 45 years (1974–2019) in relation to agricultural and urban cover. Over this time, summer temperatures increased. We found that male and female size decreased with increasing temperature. Male size also decreased with agricultural expansion. Female size, however, increased with agricultural expansion. These results suggest that rising temperatures correlate with a decrease in female body size, while, opposite to predicted, agricultural land‐use may select for increased female body size. These opposing pressures act concurrently and may result in bee extirpation from agricultural habitats if selection for large sizes is unsustainable as temperatures continue to increase. Furthermore, this study emphasizes the need to consider multiple environmental stressors when examining the effects of climate change due to their interactions. 
    more » « less
  4. Abstract ContextShifts in climate and land use have dramatically reshaped ecosystems, impacting the distribution and status of wildlife populations. For many species, data gaps limit inference regarding population trends and links to environmental change. This deficiency hinders our ability to enact meaningful conservation measures to protect at risk species. ObjectivesWe investigated historical drivers of environmental niche change for three North American weasel species (American ermine, least weasel, and long-tailed weasel) to understand their response to environmental change. MethodsUsing species occurrence records and corresponding environmental data, we developed species-specific environmental niche models for the contiguous United States (1938–2021). We generated annual hindcasted predictions of the species’ environmental niche, assessing changes in distribution, area, and fragmentation in response to environmental change. ResultsWe identified a 54% decline in suitable habitat alongside high levels of fragmentation for least weasels and region-specific trends for American ermine and long-tailed weasels; declines in the West and increased suitability in the East. Climate and land use were important predictors of the environmental niche for all species. Changes in habitat amount and distribution reflected widespread land use changes over the past century while declines in southern and low-elevation areas are consistent with impacts from climatic change. ConclusionsOur models uncovered land use and climatic change as potential historic drivers of population change for North American weasels and provide a basis for management recommendations and targeted survey efforts. We identified potentially at-risk populations and a need for landscape-level planning to support weasel populations amid ongoing environmental changes. 
    more » « less
  5. Abstract AimBiogeographers have used three primary data types to examine shifts in tree ranges in response to past climate change: fossil pollen, genetic data and contemporary occurrences. Although recent efforts have explored formal integration of these types of data, we have limited understanding of how integration affects estimates of range shift rates and their uncertainty. We compared estimates of biotic velocity (i.e. rate of species' range shifts) using each data type independently to estimates obtained using integrated models. LocationEastern North America. TaxonFraxinus pennsylvanicaMarshall (green ash). MethodsUsing fossil pollen, genomic data and modern occurrence data, we estimated biotic velocities directly from 24 species distribution models (SDMs) and 200 pollen surfaces created with a novel Bayesian spatio‐temporal model. We compared biotic velocity from these analyses to estimates based on coupled demographic‐coalescent simulations and Approximate Bayesian Computation that combined fossil pollen and SDMs with population genomic data collected across theF. pennsylvanicarange. ResultsPatterns and magnitude of biotic velocity over time varied by the method used to estimate past range dynamics. Estimates based on fossil pollen yielded the highest rates of range movement. Overall, integrating genetic data with other data types in our simulation‐based framework reduced apparent uncertainty in biotic velocity estimates and resulted in greater similarity in estimates between SDM‐ and pollen‐integrated analyses. Main ConclusionsBy reducing uncertainty in our assessments of range shifts, integration of data types improves our understanding of the past distribution of species. Based on these results, we propose further steps to reach the integration of these three lines of biogeographical evidence into a unified analytical framework. 
    more » « less