We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed–Feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrumental beam smoothing and various filter operations applied during the low-level data processing. The power spectra estimated in this way have allowed us to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning technique for observations. We present the power spectra from our first season of observing, and demonstrate that the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a level below the noise. Using the FPXS method, and combining data on scales
We describe the first-season CO Mapping Array Project (COMAP) analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and mapmaking. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits real-time total-power variations. High-efficiency filtering is achieved through spectroscopic common-mode rejection within and across receivers, resulting in nearly uncorrelated white noise within single-frequency channels. Consequently, near-optimal but biased maps are produced by binning the filtered time stream into pixelized maps; the corresponding signal bias transfer function is estimated through simulations. Data selection is performed automatically through a series of goodness-of-fit statistics, including
- Award ID(s):
- 1910999
- PAR ID:
- 10369007
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 933
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 184
- Size(s):
- Article No. 184
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract k = 0.051–0.62 Mpc−1, we estimateP CO(k) = −2. 7 ± 1.7 × 104μ K2Mpc3, the first direct 3D constraint on the clustering component of the CO(1–0) power spectrum in the literature. -
Abstract The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (∼10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers ∼67% (85%) of
EE andBB (VV ) power atℓ = 20 and ∼35% (47%) atℓ = 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of and correlated noise component rising at low-ℓ asℓ −2.4. The transfer-function-corrected low-ℓ component is comparable to the white noise at the angular knee frequencies ofℓ ≈ 18 (linear polarization) andℓ ≈ 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Λ cold dark matterEE power spectra. Bias fromE -to-B leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for anr = 0.01BB power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias. -
Abstract We present estimates of line-of-sight distortion fields derived from the 95 and 150 GHz data taken by BICEP2, BICEP3, and the Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum
. We constrain polarization rotation, expressed as the coupling constant of a Chern–Simons electromagnetic termg a γ ≤ 2.6 × 10−2/H I , whereH I is the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 MpcB 1Mpc≤ 6.6 nG at 95 GHz. We constrain the rms of optical depth fluctuations in a simple “crinkly surface” model of patchy reionization, findingA τ < 0.19 (2σ ) for the coherence scale ofL c = 100. We show that all of the distortion fields of the 95 and 150 GHz polarization maps are consistent with simulations including lensed ΛCDM, dust, and noise, with no evidence for instrumental systematics. In some cases, theEB andTB quadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spuriousB -modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage. -
ABSTRACT Cross-correlating 21cm and Lyα intensity maps of the Epoch of Reionization promises to be a powerful tool for exploring the properties of the first galaxies. Next-generation intensity mapping experiments such as the Hydrogen Epoch of Reionization Array (HERA) and SPHEREx will individually probe reionization through the power spectra of the 21cm and Lyα lines respectively, but will be limited by bright foregrounds and instrumental systematics. Cross-correlating these measurements could reduce systematics, potentially tightening constraints on the inferred astrophysical parameters. In this study, we present forecasts of cross-correlation taking into account the effects of exact uv-sampling and foreground filtering to estimate the feasibility of HERAxSPHEREx making a detection of the 21cm-Lyα cross-power spectrum. We also project the sensitivity of a cross-power spectrum between HERA and the proposed next-generation Cosmic Dawn Intensity Mapper. By isolating the sources of uncertainty, we explore the impacts of experimental limitations such as foreground filtering and Lyα thermal noise uncertainty have on making a detection of the cross-power spectrum. We then implement this strategy in a simulation of the cross-power spectrum and observational error to identify redshifts where fiducial 21cmFAST models predict the highest signal-to-noise detection (z ∼ 8). We conclude that detection of the SPHEREx-HERA cross-correlation will require an optimistic level of 21cm foreground filtering, as well as deeper thermal noise integrations due to a lack of overlapping sensitive modes but for CDIM with its larger range of scales and lower noise forecast detection levels, may be possible even with stricter 21cm foreground filtering.
-
Abstract The increasing statistical power of cosmic microwave background (CMB) datasets requires a commensurate effort in understanding their noise properties. The noise in maps from ground-based instruments is dominated by large-scale correlations, which poses a modeling challenge. This paper develops novel models of the complex noise covariance structure in the Atacama Cosmology Telescope Data Release 6 (ACT DR6) maps. We first enumerate the noise properties that arise from the combination of the atmosphere and the ACT scan strategy. We then prescribe a class of Gaussian, map-based noise models, including a new wavelet-based approach that uses directional wavelet kernels for modeling correlated instrumental noise. The models are empirical, whose only inputs are a small number of independent realizations of the same region of sky. We evaluate the performance of these models against the ACT DR6 data by drawing ensembles of noise realizations. Applying these simulations to the ACT DR6 power spectrum pipeline reveals a ∼ 20% excess in the covariance matrix diagonal when compared to an analytic expression that assumes noise properties are uniquely described by their power spectrum. Along with our public code,
mnms , this work establishes a necessary element in the science pipelines of both ACT DR6 and future ground-based CMB experiments such as the Simons Observatory (SO).