skip to main content


Title: Evidence-based recommendations for communicating the impacts of climate change on health
Abstract

Climate change poses a multifaceted, complex, and existential threat to human health and well-being, but efforts to communicate these threats to the public lag behind what we know how to do in communication research. Effective communication about climate change’s health risks can improve a wide variety of individual and population health-related outcomes by: (1) helping people better make the connection between climate change and health risks and (2) empowering them to act on that newfound knowledge and understanding. The aim of this manuscript is to highlight communication methods that have received empirical support for improving knowledge uptake and/or driving higher-quality decision making and healthier behaviors and to recommend how to apply them at the intersection of climate change and health. This expert consensus about effective communication methods can be used by healthcare professionals, decision makers, governments, the general public, and other stakeholders including sectors outside of health. In particular, we argue for the use of 11 theory-based, evidence-supported communication strategies and practices. These methods range from leveraging social networks to making careful choices about the use of language, narratives, emotions, visual images, and statistics. Message testing with appropriate groups is also key. When implemented properly, these approaches are likely to improve the outcomes of climate change and health communication efforts.

 
more » « less
Award ID(s):
2017651
NSF-PAR ID:
10369030
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Translational Behavioral Medicine
Volume:
12
Issue:
4
ISSN:
1869-6716
Page Range / eLocation ID:
p. 543-553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Monitoring technologies are used to collect a range of information, such as one’s location out of the home or movement within the home, and transmit that information to caregivers to support aging in place. Their surveilling nature, however, poses ethical dilemmas and can be experienced as intrusive to people living with Alzheimer disease (AD) and AD-related dementias. These challenges are compounded when older adults are not engaged in decision-making about how they are monitored. Dissemination of these technologies is outpacing our understanding of how to communicate their functions, risks, and benefits to families and older adults. To date, there are no tools to help families understand the functions of monitoring technologies or guide them in balancing their perceived need for ongoing surveillance and the older adult’s dignity and wishes.

    Objective

    We designed, developed, and piloted a communication and education tool in the form of a web application called Let’s Talk Tech to support family decision-making about diverse technologies used in dementia home care. The knowledge base about how to design online interventions for people living with mild dementia is still in development, and dyadic interventions used in dementia care remain rare. We describe the intervention’s motivation and development process, and the feasibility of using this self-administered web application intervention in a pilot sample of people living with mild AD and their family care partners.

    Methods

    We surveyed 29 mild AD dementia care dyads living together before and after they completed the web application intervention and interviewed each dyad about their experiences with it. We report postintervention measures of feasibility (recruitment, enrollment, and retention) and acceptability (satisfaction, quality, and usability). Descriptive statistics were calculated for survey items, and thematic analysis was used with interview transcripts to illuminate participants’ experiences and recommendations to improve the intervention.

    Results

    The study enrolled 33 people living with AD and their care partners, and 29 (88%) dyads completed the study (all but one were spousal dyads). Participants were asked to complete 4 technology modules, and all completed them. The majority of participants rated the tool as having the right length (>90%), having the right amount of information (>84%), being very clearly worded (>74%), and presenting information in a balanced way (>90%). Most felt the tool was easy to use and helpful, and would likely recommend it to others.

    Conclusions

    This study demonstrated that our intervention to educate and facilitate conversation and documentation of preferences is preliminarily feasible and acceptable to mild AD care dyads. Effectively involving older adults in these decisions and informing care partners of their preferences could enable families to avoid conflicts or risks associated with uninformed or disempowered use and to personalize use so both members of the dyad can experience benefits.

     
    more » « less
  2. Abstract

    A growing body of research demonstrates that believing action to reduce the risks of climate change is both possible (self‐efficacy) and effective (response efficacy) is essential to motivate and sustain risk mitigation efforts. Despite this potentially critical role of efficacy beliefs, measures and their use vary wildly in climate change risk perception and communication research, making it hard to compare and learn from efficacy studies. To address this problem and advance our understanding of efficacy beliefs, this article makes three contributions. First, we present a theoretically motivated approach to measuring climate change mitigation efficacy, in light of diverse proposed, perceived, and previously researched strategies. Second, we test this in two national survey samples (Amazon's Mechanical TurkN= 405, GfK Knowledge PanelN= 1,820), demonstrating largely coherent beliefs by level of action and discrimination between types of efficacy. Four additive efficacy scales emerge: personal self‐efficacy, personal response efficacy, government and collective self‐efficacy, and government and collective response efficacy. Third, we employ the resulting efficacy scales in mediation models to test how well efficacy beliefs predict climate change policy support, controlling for specific knowledge, risk perceptions, and ideology, and allowing for mediation by concern. Concern fully mediates the relatively strong effects of perceived risk on policy support, but only partly mediates efficacy beliefs. Stronger government and collective response efficacy beliefs and personal self‐efficacy beliefs are both directly and indirectly associated with greater support for reducing the risks of climate change, even after controlling for ideology and causal beliefs about climate change.

     
    more » « less
  3. Abstract

    Believing action to reduce the risks of climate change is both possible (self‐efficacy) and effective (response efficacy) is essential to motivate and sustain risk mitigation efforts, according to current risk communication theory. Although the public recognizes the dangers of climate change, and is deluged with lists of possible mitigative actions, little is known about public efficacy beliefs in the context of climate change. Prior efficacy studies rely on conflicting constructs and measures of efficacy, and links between efficacy and risk management actions are muddled. As a result, much remains to learn about how laypersons think about the ease and effectiveness of potential mitigative actions. To bring clarity and inform risk communication and management efforts, we investigate how people think about efficacy in the context of climate change risk management by analyzing unprompted and prompted beliefs from two national surveys (N= 405,N= 1,820). In general, respondents distinguish little between effective and ineffective climate strategies. While many respondents appreciate that reducing fossil fuel use is an effective risk mitigation strategy, overall assessments reflect persistent misconceptions about climate change causes, and uncertainties about the effectiveness of risk mitigation strategies. Our findings suggest targeting climate change risk communication and management strategies to (1) address gaps in people's existing mental models of climate action, (2) leverage existing public understanding of both potentially effective mitigation strategies and the collective action dilemma at the heart of climate change action, and (3) take into account ideologically driven reactions to behavior change and government action framed as climate action.

     
    more » « less
  4. Abstract

    Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020–2030 frames our ability to perform vital and far‐reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1–4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant‐based medicines, and green infrastructure. Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a parts store that supports tinkering and supports query, prediction, and rapid‐response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non‐invasive imaging, sensors, and plug‐and‐play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence‐assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.

     
    more » « less
  5. Abstract Background Team-based instructional change is a promising model for improving undergraduate STEM instruction. Teams are more likely to produce sustainable, innovative, and high-quality outcomes than individuals working alone. However, teams also tend to involve higher risks of failure and can result in inefficient allocation of valuable resources. At this point, there is limited knowledge of how teams in the context of STEM higher education should work to achieve desirable outcomes. Results In this study, we collect semi-structured interview data from 23 team members from a total of 4 teams at 3 institutions across the USA. We analyze the results using a grounded theory approach and connect them to the existing literature. This study builds upon the first part of our work that developed a model of team inputs that lead to team outcomes. In this part, we identify the mechanisms by which input characteristics influence teamwork and outcomes. Team member data expand this initial model by identifying key aspects of team processes and emergent states. In this paper, we present five team processes: strategic leadership, egalitarian power dynamics, team member commitment, effective communication, and clear decision-making processes, that shape how teams work together, and three emergent states: shared vision, psychological safety , and team cohesion , that team members perceived as important aspects of how teams feel and think when working together. Conclusions This work furthers our understanding of how instructional change teams can be successful. However, due to the highly complex nature of teams, further investigation with more teams is required to test and enrich the emerging theory. 
    more » « less