Title: Coupling wastewater‐based epidemiology with data‐driven machine learning for managing public health risks
Abstract Traditional health surveillance methods play a critical role in public health safety but are limited by the data collection speed, coverage, and resource requirements. Wastewater‐based epidemiology (WBE) has emerged as a cost‐effective and rapid tool for detecting infectious diseases through sewage analysis of disease biomarkers. Recent advances in big data analytics have enhanced public health monitoring by enabling predictive modeling and early risk detection. This paper explores the application of machine learning (ML) in WBE data analytics, with a focus on infectious disease surveillance and forecasting. We highlight the advantages of ML‐driven WBE prediction models, including their ability to process multimodal data, predict disease trends, and evaluate policy impacts through scenario simulations. We also examine challenges such as data quality, model interpretability, and integration with existing public health infrastructure. The integration of ML WBE data analytics enables rapid health data collection, analysis, and interpretation that are not feasible in current surveillance approaches. By leveraging ML and WBE, decision makers can reduce cognitive biases and enhance data‐driven responses to public health threats. As global health risks evolve, the synergy between WBE, ML, and data‐driven decision‐making holds significant potential for improving public health outcomes. more »« less
Meteorological data for public health surveillanceMichael Wimberly, Professor from the University of Oklahoma, walks us through integrating meteorological data for public health surveillance and disease forecasting. Public health surveillance involves the collection, analysis, interpretation, and dissemination of health-related data to plan, implement, and evaluate public health practices. The resulting information supports the detection of emerging health threats, planning interventions, and evaluating policies and programs to protect and improve population health.
Driver, Erin M; Ahsan, Manazir; Piske, Lucas; Lee, Heewook; Forrest, Stephanie; Halden, Rolf U; Trieu, Ni
(, Science of The Total Environment)
The rapidly expanding use of wastewater for public health surveillance requires new strategies to protect privacy rights, while data are collected at increasingly discrete geospatial scales, i.e., city, neighborhood, campus, and building-level. Data collected at high geospatial resolution can inform on labile, short-lived biomarkers, thereby making wastewater-derived data both more actionable and more likely to cause privacy concerns and stigma- tization of subpopulations. Additionally, data sharing restrictions among neighboring cities and communities can complicate efforts to balance public health protections with citizens’ privacy. Here, we have created an encrypted framework that facilitates the sharing of sensitive population health data among entities that lack trust for one another (e.g., between adjacent municipalities with different governance of health monitoring and data sharing). We demonstrate the utility of this approach with two real-world cases. Our results show the feasibility of sharing encrypted data between two municipalities and a laboratory, while performing secure private com- putations for wastewater-based epidemiology (WBE) with high precision, fast speeds, and low data costs. This framework is amenable to other computations used by WBE researchers including population normalized mass loads, fecal indicator normalizations, and quality control measures. The Centers for Disease Control and Pre- vention’s National Wastewater Surveillance System shows ~8 % of the records attributed to collection before the wastewater treatment plant, illustrating an opportunity to further expand currently limited community-level sampling and public health surveillance through security and responsible data-sharing as outlined here.
Chowell, Gerardo; Skums, Pavel
(, Physics of Life Reviews)
The integration of viral genomic data into public health surveillance has revolutionized our ability to track and forecast infectious disease dynamics. This review addresses two critical aspects of infectious disease forecasting and monitoring: the methodological workflow for epidemic forecasting and the transformative role of molecular surveillance. We first present a detailed approach for validating epidemic models, emphasizing an iterative workflow that utilizes ordinary differential equation (ODE)-based models to investigate and forecast disease dynamics. We recommend a more structured approach to model validation, systematically addressing key stages such as model calibration, assessment of structural and practical parameter identifiability, and effective uncertainty propagation in forecasts. Furthermore, we underscore the importance of incorporating multiple data streams by applying both simulated and real epidemiological data from the COVID-19 pandemic to produce more reliable forecasts with quantified uncertainty. Additionally, we emphasize the pivotal role of viral genomic data in tracking transmission dynamics and pathogen evolution. By leveraging advanced computational tools such as Bayesian phylogenetics and phylodynamics, researchers can more accurately estimate transmission clusters and reconstruct outbreak histories, thereby improving data-driven modeling and forecasting and informing targeted public health interventions. Finally, we discuss the transformative potential of integrating molecular epidemiology with mathematical modeling to complement and enhance epidemic forecasting and optimize public health strategies.
Wastewater surveillance for infectious disease preparednessThe University of Oklahoma Wastewater Based Epidemiology (OU WBE) team highlights successes from their three years of wastewater surveillance in Oklahoma & how this surveillance approach can be used as next-level monitoring for infectious disease preparedness. The OU WBE team, founded by Bradley Stevenson, Jason Vogel, and Katrin Gaardbo Kuhn in response to the COVID-19 pandemic in Summer 2020, has expanded to one of the most extensive wastewater monitoring networks in the world with a team that has included over 50 faculty, students and staff. In a paper published in 1942, Drs. James Trask and John Paul described a study to detect poliovirus in wastewater samples collected in New York and New Haven. They concluded, “It is likely that the periodic sampling of sewage for pathogenic viruses or bacteria may be a method of epidemiological value”. (1) Since then, wastewater surveillance has been used to detect sporadic outbreaks or clusters of various infectious pathogens, reaching new levels of routine utilization during the COVID-19 pandemic.(2)
Hyder, Ayaz; Trinh, Anne; Padmanabhan, Pranav; Marschhausen, John; Wu, Alexander; Evans, Alexander; Iyer, Radhika; Jones, Alexandria
(, Public Health Reports)
Objective Data-informed decision making is valued among school districts, but challenges remain for local health departments to provide data, especially during a pandemic. We describe the rapid planning and deployment of a school-based COVID-19 surveillance system in a metropolitan US county. Methods In 2020, we used several data sources to construct disease- and school-based indicators for COVID-19 surveillance in Franklin County, an urban county in central Ohio. We collected, processed, analyzed, and visualized data in the COVID-19 Analytics and Targeted Surveillance System for Schools (CATS). CATS included web-based applications (public and secure versions), automated alerts, and weekly reports for the general public and decision makers, including school administrators, school boards, and local health departments. Results We deployed a pilot version of CATS in less than 2 months (August–September 2020) and added 21 school districts in central Ohio (15 in Franklin County and 6 outside the county) into CATS during the subsequent months. Public-facing web-based applications provided parents and students with local information for data-informed decision making. We created an algorithm to enable local health departments to precisely identify school districts and school buildings at high risk of an outbreak and active SARS-CoV-2 transmission in school settings. Practice Implications Piloting a surveillance system with diverse school districts helps scale up to other districts. Leveraging past relationships and identifying emerging partner needs were critical to rapid and sustainable collaboration. Valuing diverse skill sets is key to rapid deployment of proactive and innovative public health practices during a global pandemic.
Pagsuyoin, Sheree, Ng, Calvin, Molejon, Nerissa, and Luo, Yan.
"Coupling wastewater‐based epidemiology with data‐driven machine learning for managing public health risks". Risk Analysis 45 (10). Country unknown/Code not available: Wiley-Blackwell. https://doi.org/10.1111/risa.70075.https://par.nsf.gov/biblio/10642679.
@article{osti_10642679,
place = {Country unknown/Code not available},
title = {Coupling wastewater‐based epidemiology with data‐driven machine learning for managing public health risks},
url = {https://par.nsf.gov/biblio/10642679},
DOI = {10.1111/risa.70075},
abstractNote = {Abstract Traditional health surveillance methods play a critical role in public health safety but are limited by the data collection speed, coverage, and resource requirements. Wastewater‐based epidemiology (WBE) has emerged as a cost‐effective and rapid tool for detecting infectious diseases through sewage analysis of disease biomarkers. Recent advances in big data analytics have enhanced public health monitoring by enabling predictive modeling and early risk detection. This paper explores the application of machine learning (ML) in WBE data analytics, with a focus on infectious disease surveillance and forecasting. We highlight the advantages of ML‐driven WBE prediction models, including their ability to process multimodal data, predict disease trends, and evaluate policy impacts through scenario simulations. We also examine challenges such as data quality, model interpretability, and integration with existing public health infrastructure. The integration of ML WBE data analytics enables rapid health data collection, analysis, and interpretation that are not feasible in current surveillance approaches. By leveraging ML and WBE, decision makers can reduce cognitive biases and enhance data‐driven responses to public health threats. As global health risks evolve, the synergy between WBE, ML, and data‐driven decision‐making holds significant potential for improving public health outcomes.},
journal = {Risk Analysis},
volume = {45},
number = {10},
publisher = {Wiley-Blackwell},
author = {Pagsuyoin, Sheree and Ng, Calvin and Molejon, Nerissa and Luo, Yan},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.