Two-photon polymerization (TPP) has emerged as a favored advanced manufacturing tool for creating complex 3D structures in the sub-micron regime. However, the widescale implementation of this technique is limited partly due to the cost of a high-power femtosecond laser. In this work, a method is proposed to reduce the femtosecond laser 3D printing power by as much as 50% using a combination of two-photon absorption from an 800 nm femtosecond laser and single photon absorption from a 532 nm nanosecond laser. The underlying photochemical process is explained with modeling of the photopolymerization reaction. The results show that incorporating single-photon absorption from a visible wavelength laser efficiently reduces inhibitor concentration, resulting in a decreased requirement for femtosecond laser power. The radical to macroradical conversion is dominated by the reduction in oxygen concentration, while the reduction in photoinitiator concentration limits the threshold power reduction of the femtosecond laser.
more »
« less
Model for polymerization and self-deactivation in two-photon nanolithography
A mathematical model is developed to describe the photochemical processes in two-photon nanolithography, including two-step absorption leading to initiation and self-deactivation of the photoinitiator by laser irradiance, polymer chain propagation, termination, inhibition, and inhibitor and photoinitiator diffusion. This model is solved numerically to obtain the concentrations of the reaction species as a function of time and space as a laser beam is scanned through a volume of photoresist, from which a voxel size or linewidth is determined. The most impactful process parameters are determined by fitting the model to experimentally measured linewidths for a range of laser powers and scanning speeds, while also obtaining effective nonlinearities that are similar to previously measured values. The effects and sensitivities of the different process parameters are examined. It is shown that the photopolymerization process is dominated by diffusion of photoinitiators and oxygen inhibitors, and that self-deactivation can lead to higher effective nonlinearities in two-photon nanolithography.
more »
« less
- Award ID(s):
- 2135585
- PAR ID:
- 10369042
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 15
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 26824
- Size(s):
- Article No. 26824
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A method for in situ photografting during direct laser writing by two-photon polymerization is presented. The technique serves as a powerful approach to the formation of covalent bonds between 3D photoresist structures and thermoplastic surfaces. By leveraging the same laser for both pattern generation and localized surface reactions, crosslinking between the bulk photoresist and thermoplastic surface is achieved during polymerization. When applied to in-channel direct laser writing for microfluidic device fabrication, the process yields exceptionally strong adhesion and robust bond interfaces that can withstand pressure gradients as high as 7 MPa through proper channel design, photoinitiator selection, and processing conditions.more » « less
-
Abstract The systems for multiphoton 3D nanoprinting are rapidly increasing in print speed for larger throughput and scale, unfortunately without also improvement in resolution. Separately, the process of photoinhibition lithography has been demonstrated to enhance the resolution of multiphoton printing through the introduction of a secondary laser source. The photo-chemical dynamics and interactions for achieving photoinhibition in the various multiphoton photoinitiator systems are complex and still not well understood. Here, we examine the photoinhibition process of the common photoinitiator 7-diethylamino 3-thenoylcoumarin (DETC) with inhibition lasers near or at the multiphoton printing laser wavelength in typical low peak intensity, high repetition rate 3D nanoprinting processes. We demonstrate the clear inhibition of the polymerization process consistent with a triplet absorption deactivation mechanism for a DETC photoresist as well as show inhibition for several other photoresist systems. Additionally, we explore options to recover the photoinhibition process when printing with high intensity, low repetition rate lasers. Finally, we demonstrate photoinhibition in a projection multiphoton printing system. This investigation of photoinhibition lithography with common photoinitiators elucidates the possibility for photoinhibition occurring in many resist systems with typical high repetition rate multiphoton printing lasers as well as for high-speed projection multiphoton printing.more » « less
-
Two-photon polymerization direct laser writing (TPP-DLW) is one of the most versatile technologies to additively manufacture complex parts with nanoscale resolution. However, the wide range of mechanical properties that results from the chosen combination of multiple process parameters imposes an obstacle to its widespread use. Here we introduce a thermal post-curing route as an effective and simple method to increase the mechanical properties of acrylate-based TPP-DLW-derived parts by 20-250% and to largely eliminate the characteristic coupling of processing parameters, material properties and part functionality. We identify the underlying mechanism of the property enhancement as a self-initiated thermal curing reaction, which robustly facilitates the high property reproducibility that is essential for any application of TPP-DLW.more » « less
-
Two-photon lithography (TPL) is a laser-based additive manufacturing technique that enables the printing of arbitrarily complex cm-scale polymeric 3D structures with sub-micron features. Although various approaches have been investigated to enable the printing of fine features in TPL, it is still challenging to achieve rapid sub-100 nm 3D printing. A key limitation is that the physical phenomena that govern the theoretical and practical limits of the minimum feature size are not well known. Here, we investigate these limits in the projection TPL (P-PTL) process, which is a high-throughput variant of TPL, wherein entire 2D layers are printed at once. We quantify the effects of the projected feature size, optical power, exposure time, and photoinitiator concentration on the printed feature size through finite element modeling of photopolymerization. Simulations are performed rapidly over a vast parameter set exceeding 10,000 combinations through a dynamic programming scheme, which is implemented on high-performance computing resources. We demonstrate that there is no physics-based limit to the minimum feature sizes achievable with a precise and well-calibrated P-TPL system, despite the discrete nature of illumination. However, the practically achievable minimum feature size is limited by the increased sensitivity of the degree of polymer conversion to the processing parameters in the sub-100 nm regime. The insights generated here can serve as a roadmap towards fast, precise, and predictable sub-100 nm 3D printing.more » « less
An official website of the United States government
