skip to main content


Title: Water UV-shielding in the Terrestrial Planet-forming Zone: Implications for Carbon Dioxide Emission
Abstract

Carbon dioxide is an important tracer of the chemistry and physics in the terrestrial planet-forming zone. Using a thermochemical model that has been tested against the mid-infrared water emission, we reinterpret the CO2emission as observed with Spitzer. We find that both water UV-shielding and extra chemical heating significantly reduce the total CO2column in the emitting layer. Water UV-shielding is the more efficient effect, reducing the CO2column by ∼2 orders of magnitude. These lower CO2abundances lead to CO2-to-H2O flux ratios that are closer to the observed values, but CO2emission is still too bright, especially in relative terms. Invoking the depletion of elemental oxygen outside of the water midplane ice line more strongly impacts the CO2emission than it does the H2O emission, bringing the CO2-to-H2O emission in line with the observed values. We conclude that the CO2emission observed with Spitzer-IRS is coming from a thin layer in the photosphere of the disk, similar to the strong water lines. Below this layer, we expect CO2not to be present except when replenished by a physical process. This would be visible in the13CO2spectrum as well as certain12CO2features that can be observed by JWST-MIRI.

 
more » « less
Award ID(s):
1907653
NSF-PAR ID:
10369066
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
933
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L40
Size(s):
["Article No. L40"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mid-infrared spectroscopy is one of the few ways to observe the composition of the terrestrial planet-forming zone, the inner few astronomical units, of protoplanetary disks. The species currently detected in the disk atmosphere, for example, CO, CO2, H2O, and C2H2, are theoretically enough to constrain the C/O ratio on the disk surface. However, thermochemical models have difficulties in reproducing the full array of detected species in the mid-infrared simultaneously. In an effort to get closer to the observed spectra, we have included water UV-shielding as well as more efficient chemical heating into the thermochemical code Dust and Lines. We find that both are required to match the observed emission spectrum. Efficient chemical heating, in addition to traditional heating from UV photons, is necessary to elevate the temperature of the water-emitting layer to match the observed excitation temperature of water. We find that water UV-shielding stops UV photons from reaching deep into the disk, cooling down the lower layers with a higher column. These two effects create a hot emitting layer of water with a column of 1–10 × 1018cm−2. This is only 1%–10% of the water column above the dustτ= 1 surface at mid-infrared wavelengths in the models and represents <1% of the total water column.

     
    more » « less
  2. Abstract

    The chemical composition of the inner region of protoplanetary disks can trace the composition of planetary-building material. The exact elemental composition of the inner disk has not yet been measured and tensions between models and observations still exist. Recent advancements have shown UV shielding to be able to increase the emission of organics. Here, we expand on these models and investigate how UV shielding may impact chemical composition in the inner 5 au. In this work, we use the model from Bosman et al. and expand it with a larger chemical network. We focus on the chemical abundances in the upper disk atmosphere where the effects of water UV shielding are most prominent and molecular lines originate. We find rich carbon and nitrogen chemistry with enhanced abundances of C2H2, CH4, HCN, CH3CN, and NH3by >3 orders of magnitude. This is caused by the self-shielding of H2O, which locks oxygen in water. This subsequently results in a suppression of oxygen-containing species like CO and CO2. The increase in C2H2seen in the model with the inclusion of water UV shielding allows us to explain the observed C2H2abundance without resorting to elevated C/O ratios as water UV shielding induced an effectively oxygen-poor environment in oxygen-rich gas. Thus, water UV shielding is important for reproducing the observed abundances of hydrocarbons and nitriles. From our model result, species like CH4, NH3, and NO are expected to be observable with the James Webb Space Telescope (JWST).

     
    more » « less
  3. Context.Recently, sensitive wide-bandwidth receivers in the millimetre regime have enabled us to combine large spatial and spectral coverage for observations of molecular clouds. The resulting capability to map the distributions of lines from many molecules simultaneously yields unbiased coverage of the various environments within star-forming regions.

    Aims.Our aim is to identify the dominant molecular cooling lines and characteristic emission features in the 1.3 mm window of distinct regions in the northern part of the Orion A molecular cloud. By defining and analysing template regions, we also intend to help with the interpretation of observations from more distant sources which cannot be easily spatially resolved.

    Methods.We analyse an imaging line survey covering the area of OMC-1 to OMC-3 from 200.2 to 281.8 GHz obtained with the PI230 receiver at the APEX telescope. Masks are used to define regions with distinct properties (e.g. column density or temperature ranges) from which we obtain averaged spectra. Lines of 29 molecular species (55 isotopologues) are fitted for each region to obtain the respective total intensity.

    Results.We find that strong sources like Orion KL have a clear impact on the emission on larger scales. Although not spatially extended, their line emission contributes substantially to spectra averaged over large regions. Conversely, the emission signatures of dense, cold regions like OMC-2 and OMC-3 (e.g. enhanced N2H+emission and low HCN/HNC ratio) seem to be difficult to pick up on larger scales, where they are eclipsed by signatures of stronger sources. In all regions, HCO+appears to contribute between 3 and 6% to the total intensity, the most stable value for all bright species. N2H+shows the strongest correlation with column density, but not with typical high-density tracers like HCN, HCO+, H2CO, or HNC. Common line ratios associated with UV illumination, CN/HNC and CN/HCO+, show ambiguous results on larger scales, suggesting that the identification of UV illuminated material may be more challenging. The HCN/HNC ratio may be related to temperature over varying scales.

     
    more » « less
  4. Abstract

    Studying the physical and chemical conditions of young embedded disks is crucial to constrain the initial conditions for planet formation. Here we present Atacama Large Millimeter/submillimeter Array observations of dust continuum at ∼0.″06 (8 au) resolution and molecular line emission at ∼0.″17 (24 au) resolution toward the Class 0 protostar L1527 IRS from the Large Program eDisk (Early Planet Formation in Embedded Disks). The continuum emission is smooth without substructures but asymmetric along both the major and minor axes of the disk as previously observed. The detected lines of12CO,13CO, C18O, H2CO, c-C3H2, SO, SiO, and DCN trace different components of the protostellar system, with a disk wind potentially visible in12CO. The13CO brightness temperature and the H2CO line ratio confirm that the disk is too warm for CO freezeout, with the snowline located at ∼350 au in the envelope. Both molecules show potential evidence of a temperature increase around the disk–envelope interface. SO seems to originate predominantly in UV-irradiated regions such as the disk surface and the outflow cavity walls rather than at the disk–envelope interface as previously suggested. Finally, the continuum asymmetry along the minor axis is consistent with the inclination derived from the large-scale (100″ or 14,000 au) outflow, but opposite to that based on the molecular jet and envelope emission, suggesting a misalignment in the system. Overall, these results highlight the importance of observing multiple molecular species in multiple transitions to characterize the physical and chemical environment of young disks.

     
    more » « less
  5. Abstract

    The dominant form of oxygen in cold molecular clouds is gas-phase carbon monoxide (CO) and ice-phase water (H2O). Yet, in planet-forming disks around young stars, gas-phase CO and H2O are less abundant relative to their interstellar medium values, and no other major oxygen-carrying molecules have been detected. Some astrochemical models predict that gas-phase molecular oxygen (O2) should be a major carrier of volatile oxygen in disks. We report a deep search for emission from the isotopologue16O18O (NJ= 21− 01line at 233.946 GHz) in the nearby protoplanetary disk around TW Hya. We used imaging techniques and matched filtering to search for weak emission but do not detect16O18O. Based on our results, we calculate upper limits on the gas-phase O2abundance in TW Hya of (6.4–70) × 10−7relative to H, which is 2–3 orders of magnitude below solar oxygen abundance. We conclude that gas-phase O2is not a major oxygen carrier in TW Hya. Two other potential oxygen-carrying molecules, SO and SO2, were covered in our observations, which we also do not detect. Additionally, we report a serendipitous detection of the C15NNJ= 25/2− 13/2hyperfine transitions,F= 3 − 2 andF= 2 − 1, at 219.9 GHz, which we found via matched filtering and confirm through imaging.

     
    more » « less