skip to main content


Title: Different Evolutionary Pathways Lead to Incomplete Convergence of Elongate Body Shapes in Carnivoran Mammals
Abstract Although convergence is often recognized as a ubiquitous feature across the Tree of Life, whether the underlying traits also exhibit similar evolutionary pathways towards convergent forms puzzles biologists. In carnivoran mammals, “elongate,” “slender,” and “long” are often used to describe and even to categorize mustelids (martens, polecats, and weasels), herpestids (mongooses), viverrids (civets and genets), and other carnivorans together. But just how similar these carnivorans are and whether there is convergence in the morphological component that contribute to elongation has never been assessed. Here, I found that these qualitatively described elongate carnivorans exhibited incomplete convergence towards elongate bodies compared to other terrestrial carnivorans. In contrast, the morphological components underlying body shape variation do not exhibit convergence despite evidence that these components are more elongate in elongate carnivorans compared to nonelongate carnivorans. Furthermore, these components also exhibited shorter but different phylogenetic half-lives towards more elongate adaptive peaks, indicating that different selective pressures can create multiple pathways to elongation. Incorporating the fossil record will facilitate further investigation of whether body elongation evolved adaptively or if it is simply a retained ancestral trait.[Axial skeleton; body elongation; convergent evolution; macroevolution; phylogenetic comparative methods; thoracolumbar vertebrae.]  more » « less
Award ID(s):
1906248
NSF-PAR ID:
10369105
Author(s) / Creator(s):
Editor(s):
Esselstyn, Jacob
Date Published:
Journal Name:
Systematic Biology
Volume:
71
Issue:
4
ISSN:
1063-5157
Page Range / eLocation ID:
788 to 796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Body size is often hypothesized to facilitate or constrain morphological diversity in the cranial, appendicular, and axial skeletons. However, how overall body shape scales with body size ( i.e. , body shape allometry) and whether these scaling patterns differ between ecological groups remains poorly investigated. Here, we test whether and how the relationships between body shape, body size, and limb lengths differ among species with different locomotor specializations, and describe the underlying morphological components that contribute to body shape evolution among squirrel (Sciuridae) ecotypes. We quantified the body size and shape of 87 squirrel species from osteological specimens held at museum collections. Using phylogenetic comparative methods, we first found that body shape and its underlying morphological components scale allometrically with body size, but these allometric patterns differ among squirrel ecotypes: chipmunks and gliding squirrels exhibited more elongate bodies with increasing body sizes whereas ground squirrels exhibited more robust bodies with increasing body size. Second, we found that only ground squirrels exhibit a relationship between forelimb length and body shape, where more elongate species exhibit relatively shorter forelimbs. Third, we found that the relative length of the ribs and elongation or shortening of the thoracic region contributes the most to body shape evolution across squirrels. Overall, our work contributes to the growing understanding of mammalian body shape evolution and how it is influenced by body size and locomotor ecology, in this case from robust subterranean to gracile gliding squirrels. 
    more » « less
  2. INTRODUCTION Resolving the role that different environmental forces may have played in the apparent explosive diversification of modern placental mammals is crucial to understanding the evolutionary context of their living and extinct morphological and genomic diversity. RATIONALE Limited access to whole-genome sequence alignments that sample living mammalian biodiversity has hampered phylogenomic inference, which until now has been limited to relatively small, highly constrained sequence matrices often representing <2% of a typical mammalian genome. To eliminate this sampling bias, we used an alignment of 241 whole genomes to comprehensively identify and rigorously analyze noncoding, neutrally evolving sequence variation in coalescent and concatenation-based phylogenetic frameworks. These analyses were followed by validation with multiple classes of phylogenetically informative structural variation. This approach enabled the generation of a robust time tree for placental mammals that evaluated age variation across hundreds of genomic loci that are not restricted by protein coding annotations. RESULTS Coalescent and concatenation phylogenies inferred from multiple treatments of the data were highly congruent, including support for higher-level taxonomic groupings that unite primates+colugos with treeshrews (Euarchonta), bats+cetartiodactyls+perissodactyls+carnivorans+pangolins (Scrotifera), all scrotiferans excluding bats (Fereuungulata), and carnivorans+pangolins with perissodactyls (Zooamata). However, because these approaches infer a single best tree, they mask signatures of phylogenetic conflict that result from incomplete lineage sorting and historical hybridization. Accordingly, we also inferred phylogenies from thousands of noncoding loci distributed across chromosomes with historically contrasting recombination rates. Throughout the radiation of modern orders (such as rodents, primates, bats, and carnivores), we observed notable differences between locus trees inferred from the autosomes and the X chromosome, a pattern typical of speciation with gene flow. We show that in many cases, previously controversial phylogenetic relationships can be reconciled by examining the distribution of conflicting phylogenetic signals along chromosomes with variable historical recombination rates. Lineage divergence time estimates were notably uniform across genomic loci and robust to extensive sensitivity analyses in which the underlying data, fossil constraints, and clock models were varied. The earliest branching events in the placental phylogeny coincide with the breakup of continental landmasses and rising sea levels in the Late Cretaceous. This signature of allopatric speciation is congruent with the low genomic conflict inferred for most superordinal relationships. By contrast, we observed a second pulse of diversification immediately after the Cretaceous-Paleogene (K-Pg) extinction event superimposed on an episode of rapid land emergence. Greater geographic continuity coupled with tumultuous climatic changes and increased ecological landscape at this time provided enhanced opportunities for mammalian diversification, as depicted in the fossil record. These observations dovetail with increased phylogenetic conflict observed within clades that diversified in the Cenozoic. CONCLUSION Our genome-wide analysis of multiple classes of sequence variation provides the most comprehensive assessment of placental mammal phylogeny, resolves controversial relationships, and clarifies the timing of mammalian diversification. We propose that the combination of Cretaceous continental fragmentation and lineage isolation, followed by the direct and indirect effects of the K-Pg extinction at a time of rapid land emergence, synergistically contributed to the accelerated diversification rate of placental mammals during the early Cenozoic. The timing of placental mammal evolution. Superordinal mammalian diversification took place in the Cretaceous during periods of continental fragmentation and sea level rise with little phylogenomic discordance (pie charts: left, autosomes; right, X chromosome), which is consistent with allopatric speciation. By contrast, the Paleogene hosted intraordinal diversification in the aftermath of the K-Pg mass extinction event, when clades exhibited higher phylogenomic discordance consistent with speciation with gene flow and incomplete lineage sorting. 
    more » « less
  3. Abstract

    Members of an ecological guild may be anticipated to show morphological convergence, as similar functional demands exert similar selective pressures on phenotypes. Nature is rife with examples, however, where such taxa instead exhibit ‘incomplete’ convergence or even divergence. Incorporating factors such as character displacement by other guild members or variation in ecological specialization itself may therefore be necessary to gain a more complete understanding of what constrains or promotes diversity. Cleaning, a behavior in which species remove and consume ectoparasites from “clientele,” has been shown to exhibit variation in specialization and has evolved in a variety of marine habitats around the globe. To determine the extent to which specialization in this tropic strategy has affected phenotypic evolution, we examined the evolution of cleaning behavior in five marine fish families: Labridae, Gobiidae, Pomacanthidae, Pomacentridae, and Embiotocidae. We used a comparative framework to determine patterns of convergence and divergence in body shape and size across non-cleaning and cleaning members within these five clades. Highly specialized obligate cleaning, found in the Indo-Pacific and the Caribbean, evolved in the Labridae and Gobiidae at strikingly similar times. In these two regions, obligate cleaning evolves early, shows convergence on an elongate body shape, and is restricted to species of small body size. Facultative cleaning, shown either throughout ontogeny or predominately in the juvenile phase, exhibits a much more varied phenotype, especially in geographic regions where obligate cleaning occurs. Collectively, our results are consistent with varying extents of an ecological specialization constraining or spurring morphological evolution in recurrent ways across regions.

     
    more » « less
  4. Abstract

    The evolutionary history of archosaurs and their closest relatives is characterized by a wide diversity of locomotor modes, which has even been suggested as a pivotal aspect underlying the evolutionary success of dinosaurs vs. pseudosuchians across the Triassic–Jurassic transition. This locomotor diversity (e.g., more sprawling/erect; crouched/upright; quadrupedal/bipedal) led to several morphofunctional specializations of archosauriform limb bones that have been studied qualitatively as well as quantitatively through various linear morphometric studies. However, differences in locomotor habits have never been studied across the Triassic–Jurassic transition using 3D geometric morphometrics, which can relate how morphological features vary according to biological factors such as locomotor habit and body mass. Herein, we investigate morphological variation across a dataset of 72 femora from 36 different species of archosauriforms. First, we identify femoral head rotation, distal slope of the fourth trochanter, femoral curvature, and the angle between the lateral condyle and crista tibiofibularis as the main features varying between bipedal and quadrupedal taxa, all of these traits having a stronger locomotor signal than the lesser trochanter's proximal extent. We show a significant association between locomotor mode and phylogeny, but with the locomotor signal being stronger than the phylogenetic signal. This enables us to predict locomotor modes of some of the more ambiguous early archosauriforms without relying on the relationships between hindlimb and forelimb linear bone dimensions as in prior studies. Second, we highlight that the most important morphological variation is linked to the increase of body size, which impacts the width of the epiphyses and the roundness and proximodistal position of the fourth trochanter. Furthermore, we show that bipedal and quadrupedal archosauriforms have different allometric trajectories along the morphological variation in relation to body size. Finally, we demonstrate a covariation between locomotor mode and body size, with variations in femoral bowing (anteroposterior curvature) being more distinct among robust femora than gracile ones. We also identify a decoupling in fourth trochanter variation between locomotor mode (symmetrical to semi‐pendant) and body size (sharp to rounded). Our results indicate a similar level of morphological disparity linked to a clear convergence in femoral robusticity between the two clades of archosauriforms (Pseudosuchia and Avemetatarsalia), emphasizing the importance of accounting for body size when studying their evolutionary history, as well as when studying the functional morphology of appendicular features. Determining how early archosauriform skeletal features were impacted by locomotor habits and body size also enables us to discuss the potential homoplasy of some phylogenetic characters used previously in cladistic analyses as well as when bipedalism evolved in the avemetatarsalian lineage. This study illuminates how the evolution of femoral morphology in early archosauriforms was functionally constrained by locomotor habit and body size, which should aid ongoing discussions about the early evolution of dinosaurs and the nature of their evolutionary “success” over pseudosuchians.

     
    more » « less
  5. Abstract

    Evolutionary mechanisms that underlie the origins of coloniality among organisms are diverse. Some animal colonies may be comprised strictly of clonal individuals formed from asexual budding or comprised of a chimera of clonal and sexually produced individuals that fuse secondarily. This investigation focuses on select members of the lophophorates and entoprocts whose evolutionary relationships remain enigmatic even in the age of genomics. Using transcriptomic data sets, two coloniality‐based hypotheses are tested in a phylogenetic context to find candidate genes showing evidence of positive selection and potentially convergent molecular signatures among solitary species and taxa‐forming colonies from aggregate groups or clonal budding. Approximately 22% of the 387 orthogroups tested showed evidence of positive selection in at least one of the three branch‐site tests (CODEML, BUSTED, and aBSREL). Only 12 genes could be reliably associated with a developmental function related to traits linked with coloniality, neuroanatomy, or ciliary fields. Genes testing for both positive selection and convergent molecular characters include orthologues of Radial spoke head,Elongation translation initiation factors,SEC13,andImmediate early response gene5. Maximum likelihood analyses included here resulted in tree topologies typical of other phylogenetic investigations based on wider genomic information. Further genomic and experimental evidence will be needed to resolve whether a solitary ancestor with multiciliated cells that formed aggregate groups gave rise to colonial forms in bryozoans (and perhaps the entoprocts) or that the morphological differences exhibited by phoronids and brachiopods represent trait modifications from a colonial ancestor.

     
    more » « less