skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tidal disruption of star clusters in galaxy formation simulations
ABSTRACT We investigate the evolution of the tidal field experienced by massive star clusters using cosmological simulations of Milky Way-sized galaxies. Clusters in our simulations experience the strongest tidal force in the first few hundred Myr after formation, when the maximum eigenvalue of the tidal tensor reaches several times 104 Gyr−2. After about 1 Gyr the tidal field plateaus at a lower value, with the median λm ∼ 3 × 103 Gyr−2. The fraction of time clusters spend in high tidal strength (λm > 3 × 104 Gyr−2) regions also decreases with their age from ∼20 per cent immediately after formation to less than 1 per cent after 1 Gyr. At early ages both the in situ and ex situ clusters experience similar tidal fields, while at older ages the in situ clusters in general experience stronger tidal field due to their lower orbits in host galaxy. This difference is reflected in the survival of clusters: we looked into cluster disruption calculated in simulation runtime and found that ex situ star clusters of the same initial mass typically end up with higher bound fraction at the last available simulation snapshot than the in situ ones.  more » « less
Award ID(s):
1909063
PAR ID:
10369110
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1065-1077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We study environmental quenching using the spatial distribution of current star formation and stellar population ages with the full SAMI Galaxy Survey. By using a star formation concentration index [C-index, defined as log10(r50, H α/r50, cont)], we separate our sample into regular galaxies (C-index ≥−0.2) and galaxies with centrally concentrated star formation (SF-concentrated; C-index <−0.2). Concentrated star formation is a potential indicator of galaxies currently undergoing ‘outside-in’ quenching. Our environments cover ungrouped galaxies, low-mass groups (M200 ≤ 1012.5M⊙), high-mass groups (M200 in the range 1012.5–14 M⊙) and clusters (M200 > 1014M⊙). We find the fraction of SF-concentrated galaxies increases as halo mass increases by 9 ± 2 per cent, 8 ± 3 per cent, 19 ± 4 per cent, and 29 ± 4 per cent for ungrouped galaxies, low-mass groups, high-mass groups, and clusters, respectively. We interpret these results as evidence for ‘outside-in’ quenching in groups and clusters. To investigate the quenching time-scale in SF-concentrated galaxies, we calculate light-weighted age (AgeL) and mass-weighted age (AgeM) using full spectral fitting, as well as the Dn4000 and HδA indices. We assume that the average galaxy age radial profile before entering a group or cluster is similar to ungrouped regular galaxies. At large radius (1–2 Re), SF-concentrated galaxies in high-mass groups have older ages than ungrouped regular galaxies with an age difference of 1.83 ± 0.38 Gyr for AgeL and 1.34 ± 0.56 Gyr for AgeM. This suggests that while ‘outside-in’ quenching can be effective in groups, the process will not quickly quench the entire galaxy. In contrast, the ages at 1–2 Re of cluster SF-concentrated galaxies and ungrouped regular galaxies are consistent (difference of 0.19 ± 0.21 Gyr for AgeL, 0.40 ± 0.61 Gyr for AgeM), suggesting the quenching process must be rapid. 
    more » « less
  2. ABSTRACT We measure the rate of environmentally driven star formation quenching in galaxies at z ∼ 1, using eleven massive ($$M\approx 2\times 10^{14}\, \mathrm{M}_\odot$$) galaxy clusters spanning a redshift range 1.0 < z < 1.4 from the GOGREEN sample. We identify three different types of transition galaxies: ‘green valley’ (GV) galaxies identified from their rest-frame (NUV − V) and (V − J) colours; ‘blue quiescent’ (BQ) galaxies, found at the blue end of the quiescent sequence in (U − V) and (V − J) colour; and spectroscopic post-starburst (PSB) galaxies. We measure the abundance of these galaxies as a function of stellar mass and environment. For high-stellar mass galaxies (log M/M⊙ > 10.5) we do not find any significant excess of transition galaxies in clusters, relative to a comparison field sample at the same redshift. It is likely that such galaxies were quenched prior to their accretion in the cluster, in group, filament, or protocluster environments. For lower stellar mass galaxies (9.5 < log M/M⊙ < 10.5) there is a small but significant excess of transition galaxies in clusters, accounting for an additional ∼5–10 per cent of the population compared with the field. We show that our data are consistent with a scenario in which 20–30 per cent of low-mass, star-forming galaxies in clusters are environmentally quenched every Gyr, and that this rate slowly declines from z = 1 to z = 0. While environmental quenching of these galaxies may include a long delay time during which star formation declines slowly, in most cases this must end with a rapid (τ < 1 Gyr) decline in star formation rate. 
    more » « less
  3. ABSTRACT The properties of young star clusters formed within a galaxy are thought to vary in different interstellar medium conditions, but the details of this mapping from galactic to cluster scales are poorly understood due to the large dynamic range involved in galaxy and star cluster formation. We introduce a new method for modelling cluster formation in galaxy simulations: mapping giant molecular clouds (GMCs) formed self-consistently in a FIRE-2 magnetohydrodynamic galaxy simulation on to a cluster population according to a GMC-scale cluster formation model calibrated to higher resolution simulations, obtaining detailed properties of the galaxy’s star clusters in mass, metallicity, space, and time. We find $$\sim 10{{\ \rm per\ cent}}$$ of all stars formed in the galaxy originate in gravitationally bound clusters overall, and this fraction increases in regions with elevated Σgas and ΣSFR, because such regions host denser GMCs with higher star formation efficiency. These quantities vary systematically over the history of the galaxy, driving variations in cluster formation. The mass function of bound clusters varies – no single Schechter-like or power-law distribution applies at all times. In the most extreme episodes, clusters as massive as 7 × 106 M⊙ form in massive, dense clouds with high star formation efficiency. The initial mass–radius relation of young star clusters is consistent with an environmentally dependent 3D density that increases with Σgas and ΣSFR. The model does not reproduce the age and metallicity statistics of old ($$\gt 11\rm Gyr$$) globular clusters found in the Milky Way, possibly because it forms stars more slowly at z > 3. 
    more » « less
  4. ABSTRACT Recent observational studies have uncovered a small number of very metal-poor (VMP) stars with cold kinematics in the Galactic disc and bulge. However, their origins remain enigmatic. We select a total of 138 Milky Way (MW) analogues from the TNG50 cosmological simulation based on their z = 0 properties: discy morphology, stellar mass, and local environment. In order to make more predictive statements for the MW, we further limit the spatial volume coverage of stellar populations in galaxies to that targeted by the upcoming 4MOST high-resolution survey of the Galactic disc and bulge. We find that across all galaxies, ∼20 per cent of VMP ([Fe/H] < −2) stars belong to the disc, with some analogues reaching 30 per cent. About 50 ± 10 per cent of the VMP disc stars are, on average, older than 12.5 Gyr and ∼70 ± 10 per cent come from accreted satellites. A large fraction of the VMP stars belong to the halo (∼70) and have a median age of 12 Gyr. Our results with the TNG50 cosmological simulation confirm earlier findings with simulations of fewer individual galaxies, and suggest that the stellar disc of the MW is very likely to host significant amounts of very- and extremely-metal-poor stars that, although mostly of ex situ origin, can also form in situ, reinforcing the idea of the existence of a primordial Galactic disc. 
    more » « less
  5. ABSTRACT The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star N-body models of massive (N ∼ 105–107) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 (∼30 per cent) of the YMCs with >6 × 104 M⊙ from Grudić et al. 2022 and integrate them to z = 0 using the cluster Monte Carlo code, CMC. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: Younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that N-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems. 
    more » « less