skip to main content


Title: Statistical Characteristics of High‐Frequency Gravity Waves Observed by an Airglow Imager at Andes Lidar Observatory
Abstract

The long‐term statistical characteristics of high‐frequency quasi‐monochromatic gravity waves are presented using multi‐year airglow images observed at Andes Lidar Observatory (ALO, 30.3°S, 70.7°W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and show evidence of seasonal variations. In austral winter (May–August), the observed wave occurrence frequency is higher, and preferential wave propagation is equator‐ward. In austral summer (November–February), the wave occurrence frequency is lower, and the waves mostly propagate pole‐ward. Critical‐layer filtering plays a moderate role in determining the preferential propagation direction in certain months, especially for waves with a smaller observed phase speed (less than typical background winds). The observed wave occurrence and preferential propagation direction are related to the locations of convection activities nearby and their relative distance to ALO. However, direct wave generations are less likely due to the large distance between the ALO and convective sources. Other mechanisms such as secondary wave generation and possible ducted propagation should be considered. The estimated mean momentum fluxes have typical values of a few m2 s−2.

 
more » « less
Award ID(s):
1759471
NSF-PAR ID:
10369118
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
9
Issue:
6
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a new version of the high‐resolution Kühlungsborn Mechanistic general Circulation Model (KMCM) extended toz ∼ 450 km. This model is called HIAMCM (HI Altitude Mechanistic general Circulation Model) and explicitly simulates gravity waves (GWs) down to horizontal wavelengths ofλh  165 km. We find predominant tertiary GWs in the winter thermosphere at middle/high latitudes. These GWs typically have horizontal wavelengthsλh ∼ 300–1,100 km, ground‐based periods25–90 min, and intrinsic horizontal phase speedscIh ∼ 250–350 m s−1. Abovez∼ 200 km, the predominant GW horizontal propagation directions are roughly against the background winds from the diurnal tide; the GWs propagate mainly poleward at midnight, eastward at 6 local time (LT), equatorward at noon, and westward at 18 LT. Wintertime GWs atz∼ 300 km having 165 km λh≤ 330 km create a large hot spot over the Southern Andes/Antarctic Peninsula that agrees well with quiet time satellite measurements. Due to cancelation effects, the time‐averaged zonal mean Eliassen‐Palm flux divergence from the resolved GWs in the thermosphere is negligible compared to that of the tides and compared to the zonal component of the time‐averaged zonal mean ion drag. We also find that the thermospheric GWs dissipate mainly from macroturbulent diffusion and, abovez∼ 200 km, from molecular diffusion, whereas the tides dissipate mainly from ion drag. The averaged dissipative heating in the thermosphere due to tides is much stronger than that due to GWs.

     
    more » « less
  2. Abstract

    We use high temporal‐resolution mesoscale imagery from the Geostationary Operational Environmental Satellite‐R (GOES‐R) series to track the Lamb and gravity waves generated by the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption. The 1‐min cadence of these limited area (∼1,000×1,000 km2) brightness temperatures ensures an order of magnitude better temporal sampling than full‐disk imagery available at 10‐min or 15‐min cadence. The wave patterns are visualized in brightness temperature image differences, which represent the time derivative of the full waveform with the level of temporal aliasing being determined by the imaging cadence. Consequently, the mesoscale data highlight short‐period variations, while the full‐disk data capture the long‐period wave packet envelope. The full temperature anomaly waveform, however, can be reconstructed reasonably well from the mesoscale waveform derivatives. The reconstructed temperature anomaly waveform essentially traces the surface pressure anomaly waveform. The 1‐min imagery reveals waves with ∼40–80 km wavelengths, which trail the primary Lamb pulse emitted at ∼04:29 UTC. Their estimated propagation speed is ∼315 ± 15 m s−1, resulting in typical periods of 2.1–4.2 min. Weaker Lamb waves were also generated by the last major eruption at ∼08:40–08:45 UTC, which were, however, only identified in the near field but not in the far field. We also noted wind effects such as mean flow advection in the propagation of concentric gravity wave rings and observed gravity waves traveling near their theoretical maximum speed.

     
    more » « less
  3. The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least 4 days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ∼300–350 m/s (depending on the propagation direction) and 500–1,000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 h since the eruption. TIDs following the shock fronts developed for ∼8 h with 10–30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels such as atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances. 
    more » « less
  4. Abstract

    We analyze quiet‐time data from the Gravity Field and Ocean Circulation Explorer satellite as it overpassed the Southern Andes atz≃275 km on 5 July 2010 at 23 UT. We extract the 20 largest traveling atmospheric disturbances from the density perturbations and cross‐track winds using Fourier analysis. Using gravity wave (GW) dissipative theory that includes realistic molecular viscosity, we search parameter space to determine which hot spot traveling atmospheric disturbances are GWs. This results in the identification of 17 GWs having horizontal wavelengthsλH = 170–1,850 km, intrinsic periodsτIr = 11–54 min, intrinsic horizontal phase speedscIH = 245–630 m/s, and density perturbations 0.03–7%. We unambiguously determine the propagation direction for 11 of these GWs and find that most had large meridional components to their propagation directions. Using reverse ray tracing, we find that 10 of these GWs must have been created in the mesosphere or thermosphere. We show that mountain waves (MWs) were observed in the stratosphere earlier that day and that these MWs saturated atz∼ 70–75 km from convective instability. We suggest that these 10 Gravity Field and Ocean Circulation Explorer hot spot GWs are likely tertiary (or higher‐order) GWs created from the dissipation of secondary GWs excited by the local body forces created from MW breaking. We suggest that the other GW is likely a secondary or tertiary (or higher‐order) GW. This study strongly suggests that the hot spot GWs over the Southern Andes in the quiet‐time middle winter thermosphere cannot be successfully modeled by conventional global circulation models where GWs are parameterized and launched in the troposphere or stratosphere.

     
    more » « less
  5. Abstract. The Hunga Tonga–Hunga Ha′apai volcano eruption was a unique event that caused many atmospheric phenomena around the globe. In this study, we investigate the atmospheric gravity waves in the mesosphere/lower-thermosphere (MLT) launched by the volcanic explosion in the Pacific, leveraging multistatic meteor radar observations from the Chilean Observation Network De Meteor Radars (CONDOR) and the Nordic Meteor Radar Cluster in Fennoscandia. MLT winds are computed using a recently developed 3DVAR+DIV algorithm. We found eastward- and westward-traveling gravity waves in the CONDOR zonal and meridional wind measurements, which arrived 12 and 48 h after the eruption, and we found one in the Nordic Meteor Radar Cluster that arrived 27.5 h after the volcanic detonation. We obtained observed phase speeds for the eastward great circle path at both locations of about 250 m s−1, and they were 170–150 m s−1 for the opposite propagation direction. The intrinsic phase speed was estimated to be 200–212 m s−1. Furthermore, we identified a potential lamb wave signature in the MLT winds using 5 min resolved 3DVAR+DIV retrievals. 
    more » « less