Abstract. A narrow-band sodium lidar provides high temporal and vertical resolution observations of sodium density, atmospheric temperature, and wind that facilitate the investigation of atmospheric waves in the mesosphere and lower thermosphere (80–105 km). In order to retrieve full vector winds, such a lidar is usually configured in a multi-direction observing mode, with laser beams pointing to the zenith and several off-zenith directions. Gravity wave events were observed by such a lidar system from 06:30 to 11:00 UT on 14 January 2002 at Maui, Hawaii (20.7° N, 156.3° W). A novel method based on cross-spectrum was proposed to derive the horizontal wave information from the phase shifts among measurements in different directions. At least two wave packets were identified using this method: one with a period of ∼ 1.6 h, a horizontal wavelength of ∼ 438 km, and propagating toward the southwest; and the other one with a ∼ 3.2 h period, a ∼ 934 km horizontal wavelength, and propagating toward the northwest. The background atmosphere states were also fully measured and all intrinsic wave properties of the wave packets were derived. Dispersion and polarization relations were used to diagnose wave propagation and dissipation. It was revealed that both wave packets propagate through multiple thin evanescent layers and are possibly partially reflected but still get a good portion of energy to penetrate higher altitudes. A sensitivity study demonstrates the capability of this method in detecting medium-scale and medium-frequency gravity waves. With continuous and high-quality measurements from similar lidar systems worldwide, this method can be utilized to detect and study the characteristics of gravity waves of specific spatiotemporal scales.
more »
« less
Statistical Characteristics of High‐Frequency Gravity Waves Observed by an Airglow Imager at Andes Lidar Observatory
Abstract The long‐term statistical characteristics of high‐frequency quasi‐monochromatic gravity waves are presented using multi‐year airglow images observed at Andes Lidar Observatory (ALO, 30.3°S, 70.7°W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and show evidence of seasonal variations. In austral winter (May–August), the observed wave occurrence frequency is higher, and preferential wave propagation is equator‐ward. In austral summer (November–February), the wave occurrence frequency is lower, and the waves mostly propagate pole‐ward. Critical‐layer filtering plays a moderate role in determining the preferential propagation direction in certain months, especially for waves with a smaller observed phase speed (less than typical background winds). The observed wave occurrence and preferential propagation direction are related to the locations of convection activities nearby and their relative distance to ALO. However, direct wave generations are less likely due to the large distance between the ALO and convective sources. Other mechanisms such as secondary wave generation and possible ducted propagation should be considered. The estimated mean momentum fluxes have typical values of a few m2 s−2.
more »
« less
- Award ID(s):
- 1759471
- PAR ID:
- 10369118
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 9
- Issue:
- 6
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Vertical energy transports due to dissipating gravity waves in the mesopause region (85–100 km) are analyzed using over 400 h of observational data obtained from a narrow‐band sodium wind‐temperature lidar located at Andes Lidar Observatory (ALO), Cerro Pachón (30.25°S, 70.73°W), Chile. Sensible heat flux is directly estimated using measured temperature and vertical wind; energy flux is estimated from the vertical wavenumber and frequency spectra of temperature perturbations; and enthalpy flux is derived based on its relationship with sensible heat and energy fluxes. Sensible heat flux is mostly downward throughout the region. Enthalpy flux exhibits an annual oscillation with maximum downward transport in July above 90 km. The dominant feature of energy flux is the exponential decrease from 10−2to 10−4 W m−2with the altitude increases from 85 to 100 km and is larger during austral winter. The annual mean thermal diffusivity inferred from enthalpy flux decreases from 303 m2s−1at 85 km to minimum 221 m2s−1at 90 km then increases to 350 m2s−1at 99 km. Results also show that shorter period gravity waves tend to dissipate at higher altitudes and generate more heat transport. The averaged vertical group velocities for high, medium, and low frequency waves are 4.15 m s−1, 1.15 m s−1, and 0.70 m s−1, respectively. Gravity wave heat transport brings significant cooling in the mesopause region at an average cooling rate of 6.7 ± 1.1 K per day.more » « less
-
Balloon‐Borne Observations of Short Vertical Wavelength Gravity Waves and Interaction With QBO WindsAbstract The quasi‐biennial oscillation (QBO), a ubiquitous feature of the zonal mean zonal winds in the equatorial lower stratosphere, is forced by selective dissipation of atmospheric waves that range in periods from days to hours. However, QBO circulations in numerical models tend to be weak compared with observations, probably because of limited vertical resolution that cannot adequately resolve gravity waves and the height range over which they dissipate. Observations are required to help quantify wave effects. The passage of a superpressure balloon (SPB) near a radiosonde launch site in the equatorial Western Pacific during the transition from the eastward to westward phase of the QBO at 20 km permits a coordinated study of the intrinsic frequencies and vertical structures of two inertia‐gravity wave packets with periods near 1 day and 3 days, respectively. Both waves have large horizontal wavelengths of about 970 and 5,500 km. The complementary nature of the observations provided information on their momentum fluxes and the evolution of the waves in the vertical. The near 1 day westward propagating wave has a critical level near 20 km, while the eastward propagating 3‐day wave is able to propagate through to heights near 30 km before dissipation. Estimates of the forcing provided by the momentum flux convergence, taking into account the duration and scale of the forcing, suggests zonal force of about 0.3–0.4 m s−1 day−1for the 1‐day wave and about 0.4–0.6 m s−1 day−1for the 3‐day wave, which acts for several days.more » « less
-
Abstract We use high temporal‐resolution mesoscale imagery from the Geostationary Operational Environmental Satellite‐R (GOES‐R) series to track the Lamb and gravity waves generated by the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption. The 1‐min cadence of these limited area (∼1,000×1,000 km2) brightness temperatures ensures an order of magnitude better temporal sampling than full‐disk imagery available at 10‐min or 15‐min cadence. The wave patterns are visualized in brightness temperature image differences, which represent the time derivative of the full waveform with the level of temporal aliasing being determined by the imaging cadence. Consequently, the mesoscale data highlight short‐period variations, while the full‐disk data capture the long‐period wave packet envelope. The full temperature anomaly waveform, however, can be reconstructed reasonably well from the mesoscale waveform derivatives. The reconstructed temperature anomaly waveform essentially traces the surface pressure anomaly waveform. The 1‐min imagery reveals waves with ∼40–80 km wavelengths, which trail the primary Lamb pulse emitted at ∼04:29 UTC. Their estimated propagation speed is ∼315 ± 15 m s−1, resulting in typical periods of 2.1–4.2 min. Weaker Lamb waves were also generated by the last major eruption at ∼08:40–08:45 UTC, which were, however, only identified in the near field but not in the far field. We also noted wind effects such as mean flow advection in the propagation of concentric gravity wave rings and observed gravity waves traveling near their theoretical maximum speed.more » « less
-
ABSTRACT. Ice shelves play an important role in buttressing land ice from reaching the sea, thus restrain- ing the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude vari- ability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate land- ward from the ice front at close to shallow-water gravity-wave speeds (∼70 m s−1). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ∼3 km s−1. Flexural- gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity- wave excitation.more » « less
An official website of the United States government
