skip to main content


Title: One‐Minute Resolution GOES‐R Observations of Lamb and Gravity Waves Triggered by the Hunga Tonga‐Hunga Ha'apai Eruptions on 15 January 2022
Abstract

We use high temporal‐resolution mesoscale imagery from the Geostationary Operational Environmental Satellite‐R (GOES‐R) series to track the Lamb and gravity waves generated by the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption. The 1‐min cadence of these limited area (∼1,000×1,000 km2) brightness temperatures ensures an order of magnitude better temporal sampling than full‐disk imagery available at 10‐min or 15‐min cadence. The wave patterns are visualized in brightness temperature image differences, which represent the time derivative of the full waveform with the level of temporal aliasing being determined by the imaging cadence. Consequently, the mesoscale data highlight short‐period variations, while the full‐disk data capture the long‐period wave packet envelope. The full temperature anomaly waveform, however, can be reconstructed reasonably well from the mesoscale waveform derivatives. The reconstructed temperature anomaly waveform essentially traces the surface pressure anomaly waveform. The 1‐min imagery reveals waves with ∼40–80 km wavelengths, which trail the primary Lamb pulse emitted at ∼04:29 UTC. Their estimated propagation speed is ∼315 ± 15 m s−1, resulting in typical periods of 2.1–4.2 min. Weaker Lamb waves were also generated by the last major eruption at ∼08:40–08:45 UTC, which were, however, only identified in the near field but not in the far field. We also noted wind effects such as mean flow advection in the propagation of concentric gravity wave rings and observed gravity waves traveling near their theoretical maximum speed.

 
more » « less
NSF-PAR ID:
10489900
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
3
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Hunga Tonga–Hunga Ha′apai volcano eruption was a unique event that caused many atmospheric phenomena around the globe. In this study, we investigate the atmospheric gravity waves in the mesosphere/lower-thermosphere (MLT) launched by the volcanic explosion in the Pacific, leveraging multistatic meteor radar observations from the Chilean Observation Network De Meteor Radars (CONDOR) and the Nordic Meteor Radar Cluster in Fennoscandia. MLT winds are computed using a recently developed 3DVAR+DIV algorithm. We found eastward- and westward-traveling gravity waves in the CONDOR zonal and meridional wind measurements, which arrived 12 and 48 h after the eruption, and we found one in the Nordic Meteor Radar Cluster that arrived 27.5 h after the volcanic detonation. We obtained observed phase speeds for the eastward great circle path at both locations of about 250 m s−1, and they were 170–150 m s−1 for the opposite propagation direction. The intrinsic phase speed was estimated to be 200–212 m s−1. Furthermore, we identified a potential lamb wave signature in the MLT winds using 5 min resolved 3DVAR+DIV retrievals. 
    more » « less
  2. Abstract

    The Hunga‐Tonga Hunga‐Ha'apai volcano underwent a series of large‐magnitude eruptions that generated broad spectra of mechanical waves in the atmosphere. We investigate the spatial and temporal evolutions of fluctuations driven by atmospheric acoustic‐gravity waves (AGWs) and, in particular, the Lamb wave modes in high spatial resolution data sets measured over the Continental United States (CONUS), complemented with data over the Americas and the Pacific. Along with >800 barometer sites, tropospheric observations, and Total Electron Content data from >3,000 receivers, we report detections of volcano‐induced AGWs in mesopause and ionosphere‐thermosphere airglow imagery and Fabry‐Perot interferometry. We also report unique AGW signatures in the ionospheric D‐region, measured using Long‐Range Navigation pulsed low‐frequency transmitter signals. Although we observed fluctuations over a wide range of periods and speeds, we identify Lamb wave modes exhibiting 295–345 m s−1phase front velocities with correlated spatial variability of their amplitudes from the Earth's surface to the ionosphere. Results suggest that the Lamb wave modes, tracked by our ray‐tracing modeling results, were accompanied by deep fluctuation fields coupled throughout the atmosphere, and were all largely consistent in arrival times with the sequence of eruptions over 8 hr. The ray results also highlight the importance of winds in reducing wave amplitudes at CONUS midlatitudes. The ability to identify and interpret Lamb wave modes and accompanying fluctuations on the basis of arrival times and speeds, despite complexity in their spectra and modulations by the inhomogeneous atmosphere, suggests opportunities for analysis and modeling to understand their signals to constrain features of hazardous events.

     
    more » « less
  3. The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least 4 days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ∼300–350 m/s (depending on the propagation direction) and 500–1,000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 h since the eruption. TIDs following the shock fronts developed for ∼8 h with 10–30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels such as atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances. 
    more » « less
  4. Abstract. The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 provided a rare opportunity to understand global tsunamiimpacts of explosive volcanism and to evaluate future hazards, includingdangers from “volcanic meteotsunamis” (VMTs) induced by the atmosphericshock waves that followed the eruption. The propagation of the volcanic andmarine tsunamis was analyzed using globally distributed 1 min measurementsof air pressure and water level (WL) (from both tide gauges and deep-waterbuoys). The marine tsunami propagated primarily throughout the Pacific,reaching nearly 2 m at some locations, though most Pacific locationsrecorded maximums lower than 1 m. However, the VMT resulting from theatmospheric shock wave arrived before the marine tsunami and propagatedglobally, producing water level perturbations in the Indian Ocean, theMediterranean, and the Caribbean. The resulting water level response of manyPacific Rim gauges was amplified, likely related to wave interaction withbathymetry. The meteotsunami repeatedly boosted tsunami wave energy as itcircled the planet several times. In some locations, the VMT was amplifiedby as much as 35-fold relative to the inverse barometer due to near-Proudmanresonance and topographic effects. Thus, a meteotsunami from a largereruption (such as the Krakatoa eruption of 1883) could yield atmosphericpressure changes of 10 to 30 mb, yielding a 3–10 m near-field tsunami thatwould occur in advance of (usually) larger marine tsunami waves, posingadditional hazards to local populations. Present tsunami warning systems donot consider this threat. 
    more » « less
  5. Tsunamis from volcanic ‘explosive’ eruptions are rare, with the last catastrophic event being Krakatau in 1883 (Verbeek, 1885), during which, tsunamis were generated in the far-field by pressure shock-waves and in the nearfield of the volcano, in the Sunda Straits, by several potential geological mechanisms including pyroclastic flows, ash column, and/or caldera collapse. On 1/22/55, at about 4:15 UTC, a one in 1,000 year eruption of the Hunga Tonga-Hunga Ha’a-pai Volcano (HTHHV), that had started on12/20/21, reached its paroxysm with a series of large underwater explosions, releasing enormous energy (4-18 Mt of TNT), and ejecting a large ash plume 58 km into the stratosphere. We simulate both the near- and far-field tsunami generation from the eruption, but in this paper we focus on analyzing and validating the near-field impact against field data.

     
    more » « less