skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracking nutrients in space and time: Interactions between grazing lawns and drought drive abundances of tallgrass prairie grasshoppers
Abstract We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non‐drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short‐statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above‐ground plant biomass while increasing plant foliar percentage nitrogen.We sampled arthropods and nutrient availability on and nearby (“off”) 10 bison‐grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed‐feeding grasshopper abundances were consistently higher on grazing lawns while grass‐feeder and forb‐feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change.  more » « less
Award ID(s):
2025849
PAR ID:
10369121
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
11
Issue:
10
ISSN:
2045-7758
Page Range / eLocation ID:
p. 5413-5423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production. 
    more » « less
  2. Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity. 
    more » « less
  3. Abstract In lowland tropical forests, “arthropod rain” (i.e., arthropods falling from the canopy to the understory), represents a potentially important terrestrial nutrient flux.We investigated the composition, abundance, biomass and environmental drivers of arthropod rain on Barro Colorado Island, Panama. Pairs of traps (pan traps and pole traps) placed 1 m above the ground, respectively, collected fallen arthropods and arthropods potentially climbing to the canopy.Average (±SE) arthropod biomass in pan traps was dominated by Hymenoptera (primarily ants; 0.501 ± 0.023 mg dry mass m−2 day−1) and Lepidoptera larvae (0.228 ± 0.001 mg m−2 day−1). Total dry biomass in pan traps was 0.891 ± 0.033 mg m−2 day−1; thus, ca. 27 kg of arthropod biomass rains into the understory per km2per month during the wet season in this forest. This equates to ca. 3 million mid‐sized ants falling from the canopy per day on BCI as a whole.Arthropod abundance in pan traps, especially ants and spiders, increased marginally with the increasing number of high‐wind events. By contrast, arthropod biomass showed no relationship with wind or rain.Arthropod abundance was higher in pole traps than in pan traps and was dominated by Collembola and Acari. Compositional overlap between pan and pole trap contents suggests that some fallen arboreal arthropods regularly return to the canopy.These findings illustrate an understudied pathway linking canopy and understory food webs within tropical forests, and the complex interactions between environmental conditions and arthropod rain. 
    more » « less
  4. Gallery, Rachel (Ed.)
    Abstract Livestock grazing has been shown to alter the structure and functions of grassland ecosystems. It is well acknowledged that grazing pressure is one of the strongest drivers of ecosystem‐level effects of grazing, but few studies have assessed how grazing pressure impacts grassland biodiversity and ecosystem multifunctionality (EMF).Here, we assessed how different metrics of biodiversity (i.e., plants and soil microbes) andEMFresponded to seven different grazing treatments based on an 11‐year field experiment in semi‐arid Inner Mongolian steppe.We found that soil organic carbon, plant‐available nitrogen and plant functional diversity all decreased even at low grazing pressure, while above‐ground primary production and bacterial abundance decreased only at high levels of grazing pressure.Structural equation models revealed thatEMFwas driven by direct effects of grazing, rather than the effects of grazing on plant or microbial community composition. Grazing effects on plant functional diversity and soil microbial abundance did have moderate effects onEMF, while plant richness did not.Synthesis. Our results showed ecosystem functions differ in their sensitivity to grazing pressure, requiring a low grazing threshold to achieve multiple goals in the Eurasian steppe. Aplain language summaryis available for this article. 
    more » « less
  5. Abstract Asexual reproduction plays a fundamental role in the structure, dynamics and persistence of perennial grasslands. Thus, assessing how asexual reproductive traits of plant communities respond to drought may be key for understanding grassland resistance to drought and recovery following drought.Here, we quantified three asexual reproductive traits (i.e. above‐ground tiller abundance, below‐ground bud abundance and the ratio of tillers to buds) during a 4‐year severe drought and a 2‐year drought recovery period in four grasslands that spanned an aridity gradient in northern China. We also assessed the relationship between these traits and the resistance and recovery of above‐ground net primary productivity (ANPP).We found that drought had limited and largely inconsistent effects on asexual reproduction among drought and recovery years and grasslands overall. Drought increased tiller abundance in the first treatment year and reduced bud banks by the fourth treatment year across grasslands. However, neither of the three asexual reproductive traits were correlated with drought resistance of ANPP. Drought legacies differed among the four grasslands with positive, negative and no legacies evident for the three asexual reproductive traits, and no clear relationship with aridity. Bud banks and tiller to bud ratio decreased and increased, respectively, in the first recovery year, but not in the second recovery year. In contrast to drought resistance, community bud abundance was strongly related to recovery, such that communities with higher bud abundance had greater ANPP recovery following drought.Synthesis. These results suggest that asexual reproductive traits may be important drivers of ecosystem recovery after drought, but that variable responses of these asexual reproduction traits during drought complicates predictions of overall grassland responses. 
    more » « less