Abstract In this paper, we study a predator–prey mite model of Leslie type with generalized Holling IV functional response. The model is shown to have very rich bifurcation dynamics, including subcritical and supercritical Hopf bifurcations, degenerate Hopf bifurcation, focus‐type and cusp‐type degenerate Bogdanov–Takens bifurcations of codimension 3, originating from a nilpotent focus or cusp of codimension 3 that acts as the organizing center for the bifurcation set. Coexistence of multiple steady states, multiple limit cycles, and homoclinic cycles is also found. Interestingly, the coexistence of two limit cycles is guaranteed by investigating generalized Hopf bifurcation and degenerate homoclinic bifurcation, and we also find that two generalized Hopf bifurcation points are connected by a saddle‐node bifurcation curve of limit cycles, which indicates the existence of global regime for two limit cycles. Our work extends some results in the literature.
more »
« less
A global bifurcation organizing rhythmic activity in a coupled network
We study a system of coupled phase oscillators near a saddle-node on invariant circle bifurcation and driven by random intrinsic frequencies. Under the variation of control parameters, the system undergoes a phase transition changing the qualitative properties of collective dynamics. Using Ott–Antonsen reduction and geometric techniques for ordinary differential equations, we identify heteroclinic bifurcation in a family of vector fields on a cylinder, which explains the change in collective dynamics. Specifically, we show that heteroclinic bifurcation separates two topologically distinct families of limit cycles: contractible limit cycles before bifurcation from noncontractibile ones after bifurcation. Both families are stable for the model at hand.
more »
« less
- Award ID(s):
- 2009233
- PAR ID:
- 10369196
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 32
- Issue:
- 8
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The May–Leonard model was introduced to examine the behavior of three competing populations where rich dynamics, such as limit cycles and nonperiodic cyclic solutions, arise. In this work, we perturb the system by adding the capability of global mutations, allowing one species to evolve to the other two in a linear manner. We find that for small mutation rates, the perturbed system not only retains some of the dynamics seen in the classical model, such as the three-species equal-population equilibrium bifurcating to a limit cycle, but also exhibits new behavior. For instance, we capture curves of fold bifurcations where pairs of equilibria emerge and then coalesce. As a result, we uncover parameter regimes with new types of stable fixed points that are distinct from the single- and dual-population equilibria characteristic of the original model. On the contrary, the linearly perturbed system fails to maintain heteroclinic connections that exist in the original system. In short, a linear perturbation proves to be significant enough to substantially influence the dynamics, even with small mutation rates.more » « less
-
Abstract May and Leonard (SIAM J Appl Math 29:243–253, 1975) introduced a three-species Lotka–Volterra type population model that exhibits heteroclinic cycling. Rather than producing a periodic limit cycle, the trajectory takes longer and longer to complete each “cycle”, passing closer and closer to unstable fixed points in which one population dominates and the others approach zero. Aperiodic heteroclinic dynamics have subsequently been studied in ecological systems (side-blotched lizards; colicinogenicEscherichia coli), in the immune system, in neural information processing models (“winnerless competition”), and in models of neural central pattern generators. Yet as May and Leonard observed “Biologically, the behavior (produced by the model) is nonsense. Once it is conceded that the variables represent animals, and therefore cannot fall below unity, it is clear that the system will, after a few cycles, converge on some single population, extinguishing the other two.” Here, we explore different ways of introducing discrete stochastic dynamics based on May and Leonard’s ODE model, with application to ecological population dynamics, and to a neuromotor central pattern generator system. We study examples of several quantitatively distinct asymptotic behaviors, including total extinction of all species, extinction to a single species, and persistent cyclic dominance with finite mean cycle length.more » « less
-
Abstract Recent work has shown that pairwise interactions may not be sufficient to fully model ecological dynamics in the wild. In this letter, we consider a replicator dynamic that takes both pairwise and triadic interactions into consideration using a rank-three tensor. We study these new nonlinear dynamics using a generalized rock-paper-scissors game whose dynamics are well understood in the standard replicator sense. We show that the addition of higher-order dynamics leads to the creation of a subcritical Hopf bifurcation and consequently an unstable limit cycle. It is known that this kind of behaviour cannot occur in the pairwise replicator in any three-strategy games, showing the effect higher-order interactions can have on the resulting dynamics of the system. We numerically characterize parameter regimes in which limit cycles exist and discuss possible ways to generalize this approach to studying higher-order interactions.more » « less
-
ABSTRACT Predator‐prey models, such as the Leslie‐Gower model, are essential for understanding population dynamics and stability within ecosystems. These models help explain the balance between species under natural conditions, but the inclusion of factors like the Allee effect and intraspecific competition adds complexity and realism to these interactions, enhancing our ability to predict system behavior under stress. To detect early indicators of population collapse, this study investigates the intricate dynamics of a modified Leslie‐Gower predator‐prey model with both Allee effect and intraspecific competition. We analyze the existence and stability of equilibria, as well as bifurcation phenomena, including saddle‐node bifurcations of codimension 2, Hopf bifurcations of codimension 2, and Bogdanov‐Takens bifurcations of codimension at least 4. Detailed transitions between bifurcation curves–specifically saddle‐node, Hopf, homoclinic, and limit cycle bifurcations–are also examined. We observe a novel transition phenomenon, where a system jumps from saddle‐node bifurcation to homoclinic and limit cycle bifurcations. This suggests that burst oscillations may serve as an early warning of system collapse rather than simply a tipping point. Our findings indicate that moderate levels of intraspecific competition or Allee effect support coexistence of both populations, while excessive levels may destabilize the entire biological system, leading to collapse. These insights offer valuable implications for ecological management and the early detection of risks in population dynamics.more » « less
An official website of the United States government
