skip to main content


Title: Cardiac endocardial left atrial substrate and lesion depth mapping using near-infrared spectroscopy

Atrial fibrillation (AF) is a rapid irregular electrical activity in the upper chamber and the most common sustained cardiac arrhythmia. Many patients require radiofrequency ablation (RFA) therapy to restore sinus rhythm. Pulmonary vein isolation requires distinguishing normal atrial wall from the pulmonary vein tissue, and atrial substrate ablation requires differentiating scar tissue, fibrosis, and adipose tissue. However, current anatomical mapping methods for strategically locating ablation sites by identifying structural substrates in real-time are limited. An intraoperative tool that accurately provides detailed structural information and classifies endocardial substrates could help improve RF guidance during RF ablation therapy. In this work, we propose a 7F NIRS integrated ablation catheter and demonstrate endocardial mapping onex vivoswine (n = 12) and human (n = 5) left atrium (LA). First, pulmonary vein (PV) sleeve, fibrosis and ablation lesions were identified with NIRS-derived contrast indices. Based on these key spectral features, classification algorithms identified endocardial substrates with high accuracy (<11% error). Then, a predictive model for lesion depth was evaluated on classified lesions. Model predictions correlated well with histological measurements of lesion dimensions (R = 0.984). Classified endocardial substrates and lesion depth were represented in 2D spatial maps. These results suggest NIRS integrated mapping catheters can serve as a complementary tool to the current electroanatomical mapping system to improve treatment efficacy.

 
more » « less
NSF-PAR ID:
10369219
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Biomedical Optics Express
Volume:
13
Issue:
4
ISSN:
2156-7085
Page Range / eLocation ID:
Article No. 1801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Optical coherence tomography (OCT) has the potential to provide real‐time imaging guidance for atrial fibrillation ablation, with promising results for lesion monitoring. OCT can also offer high‐resolution imaging of tissue composition, but there is insufficient cardiac OCT data to inform the use of OCT to reveal important tissue architecture of the human left atrium. Thus, the objective of this study was to define OCT imaging data throughout the human left atrium, focusing on the distribution of adipose tissue and fiber orientation as seen from the endocardium.

    Methods and Results

    Human hearts (n = 7) were acquired for imaging the left atrium with OCT. A spectral‐domain OCT system with 1325 nm center wavelength, 6.5 μm axial resolution, 15 μm lateral resolution, and a maximum imaging depth of 2.51 mm in the air was used. Large‐scale OCT image maps of human left atrial tissue were developed, with adipose thickness and fiber orientation extracted from the imaging data. OCT imaging showed scattered distributions of adipose tissue around the septal and pulmonary vein regions, up to a depth of about 0.43 mm from the endocardial surface. The total volume of adipose tissue detected by OCT over one left atrium ranged from 1.42 to 28.74 mm3. Limited fiber orientation information primarily around the pulmonary veins and the septum could be identified.

    Conclusion

    OCT imaging could provide adjunctive information on the distribution of subendocardial adipose tissue, particularly around thin areas around the pulmonary veins and septal regions. Variations in OCT‐detected tissue composition could potentially assist ablation guidance.

     
    more » « less
  2. Despite considerable advances in guidance of radiofrequency ablation (RFA) therapy for the treatment of cardiac arrhythmias, success rates have been hampered by a lack of tools for precise intraoperative evaluation of lesion extent. Near‐infrared spectroscopic (NIRS) techniques are sensitive to tissue structural and biomolecular properties, characteristics that are directly altered by radiofrequency (RF) treatment. In this work, a combined NIRS‐RFA catheter is developed for real‐time monitoring of tissue reflectance during RF energy delivery. An algorithm is proposed for processing NIR spectra to approximate nonirrigated lesion depth in both atrial and ventricular tissues. The probe optical geometry was designed to bias measurement influence toward absorption enabling enhanced sensitivity to changes in tissue composition. A set of parameters termed “lesion optical indices” are defined encapsulating spectral differences between ablated and unablated tissue. Utilizing these features, a model for real‐time tissue spectra classification and lesion size estimation is presented. Experimental validation conducted within freshly excised porcine cardiac specimens showed strong concordance between algorithm estimates and post‐hoc tissue assessment.

     
    more » « less
  3. Epicardial ablation is necessary for the treatment of ventricular tachycardias refractory to endocardial ablation due to arrhythmic substrates involving the epicardium. The human epicardium is composed of adipose tissue and coronary vasculature embedded on the surface and within the myocardium, which can complicate electroanatomical mapping, electrogram interpretation and ablation delivery. We propose using near-infrared spectroscopy (NIRS) to decipher adipose tissue from myocardial tissue within human heartsex vivo. Histological measurement of epicardial adipose thickness direct correlated (R = 0.884) with the adipose contrast index. These results demonstrate the potential of NIRS integrated catheters for mapping the spatial distribution of epicardial substrates and could aid in improving guidance during epicardial ablation interventions.

     
    more » « less
  4. Abstract

    In radiofrequency ablation (RFA) treatment of cardiac arrhythmias, intraprocedural assessment of treatment efficacy relies on indirect measures of adequate tissue destruction. Direct sensing of diffuse reflectance spectral changes at the ablation site using optically integrated RFA catheters has been shown to enable accurate prediction of lesion dimensions, ex vivo. Challenges of optical guidance can be due to obtaining reliable measurements under various catheter‐tissue contact orientations. In this work, addressed this limitation by assessing the feasibility of monitoring lesion progression using single‐fiber reflectance spectroscopy (SFRS). A total of 110 endocardial lesions of various sizes were generated in freshly excised swine right ventricular tissue using a custom‐built, irrigated SFRS‐RFA catheter. Models were developed for assessing catheter‐tissue contact, the presence of nontransmural or transmural lesions and lesion depth percentage. These results support the use of SFRS‐based catheters for irrigated lesion assessment and motivate further exploration of using multi‐SFRS catheters for omnidirectionality.

     
    more » « less
  5. null (Ed.)
    Genetic mutations in genes encoding for potassium channel protein structures have been recently associated with episodes of atrial fibrillation in asymptomatic patients. The aim of this study is to investigate the potential arrhythmogenicity of three gain-of-function mutations related to atrial fibrillation—namely, KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M—using modeling and simulation of the electrophysiological activity of the heart. A genetic algorithm was used to tune the parameters’ value of the original ionic currents to reproduce the alterations experimentally observed caused by the mutations. The effects on action potentials, ionic currents, and restitution properties were analyzed using versions of the Courtemanche human atrial myocyte model in different tissues: pulmonary vein, right, and left atrium. Atrial susceptibility of the tissues to spiral wave generation was also investigated studying the temporal vulnerability. The presence of the three mutations resulted in an overall more arrhythmogenic substrate. Higher current density, action potential duration shortening, and flattening of the restitution curves were the major effects of the three mutations at the single-cell level. The genetic mutations at the tissue level induced a higher temporal vulnerability to the rotor’s initiation and progression, by sustaining spiral waves that perpetuate until the end of the simulation. The mutation with the highest pro-arrhythmic effects, exhibiting the widest sustained VW and the smallest meandering rotor’s tip areas, was KCNE3-V17M. Moreover, the increased susceptibility to arrhythmias and rotor’s stability was tissue-dependent. Pulmonary vein tissues were more prone to rotor’s initiation, while in left atrium tissues rotors were more easily sustained. Re-entries were also progressively more stable in pulmonary vein tissue, followed by the left atrium, and finally the right atrium. The presence of the genetic mutations increased the susceptibility to arrhythmias by promoting the rotor’s initiation and maintenance. The study provides useful insights into the mechanisms underlying fibrillatory events caused by KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M and might aid the planning of patient-specific targeted therapies. 
    more » « less