skip to main content


Title: Meteorological and geographical factors associated with dry lightning in central and northern California
Abstract

Lightning occurring with less than 2.5 mm of rainfall—typically referred to as ‘dry lightning’—is a major source of wildfire ignition in central and northern California. Despite being rare, dry lightning outbreaks have resulted in destructive fires in this region due to the intersection of dense, dry vegetation and a large population living adjacent to fire-prone lands. Since thunderstorms are much less common in this region relative to the interior West, the climatology and drivers of dry lightning have not been widely investigated in central and northern California. Using daily gridded lightning and precipitation observations (1987–2020) in combination with atmospheric reanalyses, we characterize the climatology of dry lightning and the associated meteorological conditions during the warm season (May–October) when wildfire risk is highest. Across the domain, nearly half (∼46%) of all cloud-to-ground lightning flashes occurred as dry lightning during the study period. We find that higher elevations (>2000 m) receive more dry lightning compared to lower elevations (<1000 m) with activity concentrated in July-August. Although local meteorological conditions show substantial spatial variation, we find regionwide enhancements in mid-tropospheric moisture and instability on dry lightning days relative to background climatology. Additionally, surface temperatures, lower-tropospheric dryness, and mid-tropospheric instability are increased across the region on dry versus wet lightning days. We also identify widespread dry lightning outbreaks in the historical record, quantify their seasonality and spatial extent, and analyze associated large-scale atmospheric patterns. Three of these four atmospheric patterns are characterized by different configurations of ridging over the continental interior and offshore troughing. Understanding the meteorology of dry lightning across this region can inform forecasting of possible wildfire ignitions and is relevant for assessing changes in dry lightning and wildfire risk in climate projections.

 
more » « less
Award ID(s):
2019762 2019813
NSF-PAR ID:
10369243
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Climate
Volume:
1
Issue:
2
ISSN:
2752-5295
Page Range / eLocation ID:
Article No. 025001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Genetic divergence along the central Baja California Peninsula, Mexico, has been hypothesized to reflect a Pliocene cross-peninsular seaway that previously isolated northern and southern populations of terrestrial plants and animals. One way to test this hypothesis is through quantitative analysis of relict channels preserved on low-relief paleo-surfaces. Recognition of tidal channels on relict landscapes offers a powerful tool for reconstructing past sea level in tectonically active arid coastal regions where crustal uplift results in relative sea-level fall and preservation of ancient channel networks. This method requires reliable criteria to distinguish fluvial versus tidal channels, which is challenging due to the overlap of standard metrics for the two channel types, and possible inheritance or overprinting of geometries. We improve the utility of existing metrics and explore the potential for identifying paleo-sea-level indicators by analyzing modern and ancient channels to identify unique patterns in planform geometry and to evaluate their applicability for classifying tidal versus fluvial origins. Preliminary measurements of geographically diverse modern systems reveal distinct, quantifiable differences between the two channel types in along-channel curvature, width, and wavelet spectra. Modern tidal channels display a pronounced and systematic down-channel increase in channel width and decrease in curvature. In contrast, modern fluvial channels do not display spatial patterns in channel width and curvature along their lengths. These patterns provide diagnostic criteria that can be paired with wavelet analysis of meander belts to classify the paleoenvironment of ancient channels based on their planform geometry. We apply this approach to evaluate the origin of channels preserved on relict landscapes in the San Ignacio trough in the central Baja California peninsula, a former low-relief embayment of the Pacific Ocean. Early results reveal the presence of ancient tidal channel networks at elevations of ~ 50-300 m above modern sea level on surfaces that are independently dated to be ca. 4-5 Ma. These findings provide evidence for post 4-Ma uplift in the mid-peninsular region and an ancient tidal environment that may have isolated northern and southern terrestrial populations. 
    more » « less
  2. null (Ed.)
    The November 2018 Camp Fire quickly became the deadliest and most destructive wildfire in California history. In this case study, we investigate the contribution of meteorological conditions and, in particular, a downslope windstorm that occurred during the 2018 Camp Fire. Dry seasonal conditions prior to ignition led to 100-h fuel moisture contents in the region to reach record low levels. Meteorological observations were primarily made from a number of remote automatic weather stations and a mobile scanning Doppler lidar deployed to the fire on 8 November 2018. Additionally, gridded operational forecast models and high-resolution meteorological simulations were synthesized in the analysis to provide context for the meteorological observations and structure of the downslope windstorm. Results show that this event was associated with mid-level anti-cyclonic Rossby wave breaking likely caused by cold air advection aloft. An inverted surface trough over central California created a pressure gradient which likely enhanced the downslope winds. Sustained surface winds between 3–6 m s−1 were observed with gusts of over 25 m s−1 while winds above the surface were associated with an intermittent low-level jet. The meteorological conditions of the event were well forecasted, and the severity of the fire was not surprising given the fire danger potential for that day. However, use of surface networks alone do not provide adequate observations for understanding downslope windstorm events and their impact on fire spread. Fire management operations may benefit from the use of operational wind profilers to better understand the evolution of downslope windstorms and other fire weather phenomena that are poorly understood and observed. 
    more » « less
  3. Abstract

    The increase in wildfire risk in the United States in recent decades has been linked to rapid growth of the wildland‐urban interface and to changing climate. While there have been numerous studies on wildfires and climate change, few have separately assessed the impact of climate response to land‐use‐land‐cover change (LULCC) on wildfires. In this study, we analyse two 10‐year regional climate simulations driven by the current (2011) and future (2100) land‐use‐land‐cover patterns to assess modifications by the projected LULCC to the frequency and severity of fire‐prone atmospheric conditions described by two fire weather indices, the Canadian Forest Fire Weather Index and the Hot‐Dry‐Windy Index. The simulation corresponding to future land‐use‐land‐cover pattern yields higher surface temperature and vapour pressure deficit and lower precipitation compared to the simulation with the current pattern in areas where urbanized landscapes replace forests and grasslands, such as along the Piedmont and outside the Chicagoland region, while in areas where croplands replace forests, such as the southeast Coastal Plains, the results are reversed. These changes to local and regional atmospheric conditions lead to longer fire seasons and more extreme fire‐weather conditions in much of the eastern United States, specifically in the Southeast and Ohio River Valley where significant urban expansion is projected by the end of the century. Whereas in Southern California where some highly flammable shrublands will be replaced by urban or crop lands, fire‐prone atmospheric conditions are likely to be less frequent and less extreme in the future. However, much of California moves towards a year‐round fire season under the projected LULCC. The results suggest that by altering atmospheric conditions, LULCC may play an important role in determining fire regime, but the effects are highly heterogeneous and regionalized.

     
    more » « less
  4. Abstract

    Summertime air quality is a growing public health concern in the populated region of Northern Utah. Whereas winter air pollution is highly linked with local atmospheric temperature inversions associated with upper atmospheric high-pressure and radiational cooling in valleys, the relationship between climate factors and the frequency of poor air quality during summer is still unknown. Analyzing the last 20 years of data, we demonstrated that summertime unhealthy days (as defined by PM2.5 air quality index level) in Northern Utah highly correlate with the number of dry-hot days, wildfire size, and an upper atmospheric ridge over the Northwestern United States. The persistent atmospheric ridge enhances lightning-caused fire burned areas in northwestern states and then transports the wildfire smoke toward Northern Utah. Similarly, climate model simulations confirm observational findings, such as an increasing trend of the upper atmospheric ridge and summertime dry days in the northwestern states. Such metrics developed in this study could be used to establish longer-term monitoring and seasonal forecasting for air quality and its compounding factors, which is currently limited to forecasting products for only several days.

     
    more » « less
  5. Abstract

    Increased Arctic air temperatures and evaporative fluxes have coincided with more frequent and destructive high‐latitude wildfires. Arctic fires impact ecosystems and people, especially at the community‐level by degrading air quality, destroying agriculture, and threatening life and property. Central Eastern Interior (CEI) Alaska is one such region that has recently experienced the effects of wildfire activity related to warming air temperatures. To improve our ability to identify fire weather events and assess their potential for extreme outbreaks at actionable lead times relevant to fire weather forecasters and managers, new metrics and approaches need to be established and applied toward understanding the physical mechanisms underlying such wildland fire characteristics. Our study uses a new, regional atmospheric circulation metric, the Alaska Blocking Index (ABI), to describe midtropospheric air pressure around Alaska, which is subsequently related to CEI fire weather conditions at the Predictive Service Area (PSA) scale in climatological and extreme events frameworks. Of note, during years of high fire activity, Build‐Up Index (BUI) values tend to be anomalously high during the duff and drought phases across the CEI PSAs, though comparatively lower BUI values are still associated with high fire activity in the Tanana Zone‐South (AK03S) PSA. Likewise, extreme BUI values are strongly tied to high ABI values and well‐defined upper‐air ridging circulation patterns in the duff and drought periods. The statistical skill of mean daily ABI values in the 6–10 day period preceding extreme duff period BUI values is modest (τ2 > 14%) in the Upper Yukon Valley (AK02) PSA, a hotbed of wildland fire activity. Extremes in ABI and CEI BUI often occur in tandem, yielding regional predictability of upper‐air weather patterns and extremes and underlying surface weather conditions, by statistical and/or dynamical forecast models, imperative for local community and governmental organizations to effectively manage and allocate Alaska's fire weather resources.

     
    more » « less